Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización cinemática, electromiográfica y estabilométrica del pedaleo en bicicleta de ruta. Reporte de caso

Kinematic, stabilometric and electromyographic characterization of road bike pedaling. Case report



Abrir | Descargar


Sección
Artículos

Cómo citar
Caracterización cinemática, electromiográfica y estabilométrica del pedaleo en bicicleta de ruta. Reporte de caso. (2020). Revista Ingeniería Biomédica, 13(26). https://doi.org/10.24050/19099762.n26.2019.1369

Dimensions
PlumX
Citaciones
Julialba Castellanos Ruiz
Liliana Patricia Escobar Escobar
Luis Daniel Gallo Cardona
Jose Luis Rodriguez Sotelo
Daniela López Londoño

Julialba Castellanos Ruiz,

Fisioterapeuta Especialista en intervensión fisioterapeutica en ortopedia Especialista en educación sexual Magister en educación y desarrollo humano

Liliana Patricia Escobar Escobar,

Fisioterapeuta Especialista en gestión de proyectos de desarrollo con enfoque sociohumanístico Especialista en intervención fisioterapeutica en ortopedia y traumatología Magister en actividad física y deporte

Luis Daniel Gallo Cardona,

Fisioterapeuta

Jose Luis Rodriguez Sotelo,

Ingeniero electrónico

Magister en automatización industrial

Doctor en ingeniería


Daniela López Londoño,

Ingeniería biomédica

Maestría en ingeniería


Objetivo: Determinar las características cinemáticas, electromiográficas y estabilométricas del pedaleo en bicicleta de ruta. Metodología: se realiza un estudio tipo reporte de caso, realizado con 2 ciclistas (profesional y amateur) a quienes se les realizan pruebas de cinemática, electromiografía (EMG) de superficie y estabilometría, haciendo uso de la tecnología Bioengineering (BTS). Resultados: la potencia tiene una tendencia lineal siendo mayor en el ciclista profesional en comparación con el amateur, por otra parte, la velocidad tiene un comportamiento lineal siendo mayor la del ciclista profesional. En el análisis cinemático hay mayor consistencia en los movimientos realizados por el ciclista profesional que el amateur, las diferencias son más evidentes en tronco y tobillo, las cuales son las articulaciones extremas-proximal y distal de la cadena cinética.  La actividad muscular mostró patrones más estables y amplitudes con mayor tamaño en el ciclista profesional, de acuerdo con la estabilidad, el índice de Romberg en ambos ciclistas es normal con un valor de 0,879 para el profesional y 0,704 para el amateur. Conclusión: Los mejores resultados obtenidos por el ciclista profesional en relación con las variables estudiadas pueden estar asociados con el tiempo de entrenamiento y la realización del gesto deportivo con una técnica más depurada.


Visitas del artículo 1403 | Visitas PDF 1026


Descargas

Los datos de descarga todavía no están disponibles.
  1. Bailey, M. P., Maillardet, F. J., & Messenger, N. (2003). Kinematics of cycling in relation to anterior knee pain and patellar tendinitis. Journal of Sports Sciences, 21(8), 649–657. https://doi.org/10.1080/0264041031000102015
  2. Baydal-Bertomeu, J. M., Barberà I Guillem, R., Soler-Gracia, C., Peydro De Moya, M. F., Prat, J. M., & Barona De Guzmán, R. (2004). Determinación de los patrones de comportamiento postural en población sana Española. Acta Otorrinolaringologica Espanola, 55(6), 260–269. https://doi.org/10.1016/S0001-6519(04)78520-9
  3. Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of Bicycle Saddle Height on Knee Injury Risk and Cycling Performance. Sports Medicine, 41(6), 463–476. https://doi.org/10.2165/11588740-000000000-00000
  4. Bini, Rodrigo R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553–559. https://doi.org/10.1080/17461391.2015.1135984
  5. Bini, Rodrigo R, Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301–314. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20811079
  6. Bini, Rodrigo Rico, Diefenthaeler, F., & Mota, C. B. (2010). Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology, 20(1), 102–107. https://doi.org/10.1016/j.jelekin.2008.10.003
  7. Bini, Rodrigo Rico, Hume, P. A., & Croft, J. (2014). Cyclists and triathletes have different body positions on the bicycle. European Journal of Sport Science, 14(sup1), S109–S115. https://doi.org/10.1080/17461391.2011.654269
  8. Bini, Rodrigo Rico, Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44–52. https://doi.org/10.1080/17461391.2012.725105
  9. Bini, Rodrigo Rico, Senger, D., Lanferdini, F., & Lopes, A. L. (2012). Joint kinematics assessment during cycling incremental test to exhaustion. Isokinetics and Exercise Science, 20(1), 99–105. https://doi.org/doi:10.3233/IES-2012-0447
  10. Bressel, E., Yonker, J. C., Kras, J., & Heath, E. M. (2007). Comparison of static and synamic balance in female. Journal of Athletic Training, 42(1), 42–46. https://doi.org/10.12968/hmed.2007.68.6.23571
  11. Carpes, F., Dagnese, F., Bini, R., Diefenthaeler, F., Rossato, M., Mota, C., & Guimarães, A. (2006). Pedaling kinematics characteristics of competitive cyclists of different disciplines. J Sports Sci, 6(1), 7–14.
  12. Castellote Olivito, J. M. (n.d.). Biomecánica de la extremidad inferior en el ciclista. Archivos de Medicina Del Deporte, 3(11), 233–238.
  13. Chapman, A. R., Vicenzino, B., Blanch, P., & Hodges, P. W. (2007). Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Experimental Brain Research, 181(3), 503–518. https://doi.org/10.1007/s00221-007-0949-5
  14. Chapman, A., Vicenzino, B., Blanch, P., & Hodges, P. (2009). Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment? Journal of Science and Medicine in Sport, 12(1), 31–34. https://doi.org/10.1016/j.jsams.2007.08.012
  15. Charpentier, A. O. (2015). La lucha ha de ser a muerte (y por puro prestigio). Reflexiones sobre la competencia deportiva femenina. Revista de Investigación y Divulgación Sobre Los Estudios de Género, 22(17), 75–101. Retrieved from http://revistasacademicas.ucol.mx/index.php/generos/article/view/716/pdf
  16. Clark, R. A., Bryant, A. L., Pua, Y., McCrory, P., Bennell, K., & Hunt, M. (2010). Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait & Posture, 31(3), 307–310. https://doi.org/10.1016/j.gaitpost.2009.11.012
  17. da Silva, J. C. L., Ekblom, M. M., Tarassova, O., Andersson, E., Rönquist, G., Grundström, H., & Arndt, A. (2018). Effect of increasing workload on knee extensor and flexor muscular activity during cycling as measured with intramuscular electromyography. PLOS ONE, 13(8), e0201014. https://doi.org/10.1371/journal.pone.0201014
  18. De Asha, A. R., & Buckley, J. G. (2015). The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees. Clinical Biomechanics, 30(4), 343–346. https://doi.org/10.1016/j.clinbiomech.2015.03.001
  19. De Marchis, C., Schmid, M., Bibbo, D., Bernabucci, I., & Conforto, S. (2013). Inter-individual variability of forces and modular muscle coordination in cycling: A study on untrained subjects. Human Movement Science, 32(6), 1480–1494. https://doi.org/10.1016/J.HUMOV.2013.07.018
  20. de Waard, D. (2017). Cycling futures. Transport Reviews, 37(3), 403–405. https://doi.org/10.1080/01441647.2017.1281850
  21. Faúndez, C. A. (2007). Intereses económicos y sociales que rodean el ciclismo de competencia. RE - Presentaciones: Periodismo, Comunicacíon y Sociedad, 3, 167–183.
  22. Haro, M. (2014). Laboratorio de análisis de marcha y movimiento. Revista Médica Clínica Las Condes, 25(2), 237–247. https://doi.org/10.1016/S0716-8640(14)70034-3
  23. Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35 Suppl 2, ii7–ii11. https://doi.org/10.1093/ageing/afl077
  24. Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine. https://doi.org/10.2165/11538560-000000000-00000
  25. Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182–198. https://doi.org/10.1016/J.JELEKIN.2007.10.010
  26. Hug, F., Turpin, N. A., Guével, A., & Dorel, S. (2010). Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? Journal of Applied Physiology, 108(6), 1727–1736. https://doi.org/10.1152/japplphysiol.01305.2009
  27. Karlsson, A., & Lanshammar, H. (1997). Analysis of postural sway strategies using an inverted pendulum model and force plate data. Gait and Posture, 5(3), 198–203. https://doi.org/10.1016/S0966-6362(96)01082-X
  28. Kioumourtzoglou, E., Derri, V., Mertzanidou, O., & Tzetzis, G. (1997). Experience with perceptual and motor skills in rhythmic gymnastics. Perceptual and Motor Skills, 84(3 Pt 2), 1363–1372. https://doi.org/10.2466/pms.1997.84.3c.1363
  29. Lucía, A., Joyos, H., & Chicharro, J. L. (2000). Physiological Response to Professional Road Cycling: Climbers vs. Time Trialists. International Journal of Sports Medicine, 21(7), 505-512. doi:10.1055/s-2000-7420
  30. Melzer, I., Benjuya, N., Kaplanski, J., & Alexander, N. (2009). Association between ankle muscle strength and limit of stability in older adults. Age and Ageing. https://doi.org/10.1093/ageing/afn249
  31. Meyer, D., Dungs, C., & Senner, V. (2015). Estimating the relationship between heart rate and power output for short term cycling exercises. In Procedia Engineering (Vol. 112, pp. 237–243). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2015.07.206
  32. Nederhand, M. J., Van Asseldonk, E. H. F., der Kooij, H. van, & Rietman, H. S. (2012). Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side. Clinical Biomechanics, 27(1), 40–45. https://doi.org/10.1016/j.clinbiomech.2011.07.008
  33. Ortiz, F., Argothy, R., Castelblanco, A., Florez, P., & Rodriguez, M. (2016). capitulo 14. Evaluacion del equilibrio y de la marcha. In el manual moderno (Ed.), texto de medicina fisica y rehabilitacion (pp. 182–199). bogota, D.C.
  34. Paillard, T., & Noé, F. (2006). Effect of expertise and visual contribution on postural control in soccer.
  35. Scandinavian Journal of Medicine & Science in Sports, 16(5), 345–348. https://doi.org/10.1111/j.1600-0838.2005.00502.x
  36. Perez-Landaluce J., Fernández-García B., Rodríguez-Alonso M., García-Herrero F., García-Zapico P., Patterson A.M. & Terrados N. (2002). Physiological differences and rating of perceived exertion (RPE) in professional, amateur and young cyclists. J Sport Med Phys Fitness, 42, 389-395.
  37. Peterka, R. J. (2002). Sensorimotor integration in human postural control. J Neurophysiol, 88, 1097–1118. https://doi.org/10.1152/jn.00605.2001
  38. Peveler, W. W., Pounders, J. D., & Bishop, P. A. (2007). Effects of Saddle Height on Anaerobic Power Production in Cycling. The Journal of Strength and Conditioning Research, 21(4), 1023. https://doi.org/10.1519/R-20316.1
  39. Rassier, D. E., MacIntosh, B. R., & Herzog, W. (1999). Length dependence of active force production in skeletal muscle. Journal of Applied Physiology, 86(5), 1445–1457. https://doi.org/10.1152/jappl.1999.86.5.1445
  40. Rose, D. (2005). Fall proof! A comprehensive balance and movility training program. (H. Kineics, Ed.) (1st ed.). Barcelona.
  41. Saito, A., Watanabe, K., & Akima, H. (2015). Coordination among thigh muscles including the vastus intermedius and adductor magnus at different cycling intensities. Human Movement Science, 40, 14–23. https://doi.org/10.1016/J.HUMOV.2014.11.010
  42. Sanderson, D. J., Martin, P. E., Honeyman, G., & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642–649. https://doi.org/10.1016/j.jelekin.2005.11.003
  43. Schwellnus, M., & Derman, E. (2005). Common injuries in cycling: Prevention, diagnosis and management. South African Family Practice, 47(7), 14–19. https://doi.org/10.1080/20786204.2005.10873255
  44. Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Medicine and Science in Sports and Exercise, 30(3), 442–449. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9526892
  45. Tamborindeguy, A. C., & Rico Bini, R. (2011). Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 15(2), 186–191. https://doi.org/10.1016/j.jbmt.2009.07.009
  46. Tiwari, P. S., Gite, L. P., Pandey, M. M., & Shrivastava, A. K. (2011). Pedal power for occupational activities: Effect of power output and pedalling rate on physiological responses. International Journal of Industrial Ergonomics, 41(3), 261–267. https://doi.org/10.1016/j.ergon.2011.02.011
  47. Uimonen, S., Laitakari, K., Sorri, M., Bloigu, R., & Palva, A. (1992). Effect of positioning of the feet in posturography. Journal of Vestibular Research : Equilibrium & Orientation, 2(4), 349–356. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1342407
  48. Winter, D A, Patla, A. E., & Frank, J. S. (1990). Assessment of balance control in humans. Medical Progress through Technology, 16(1–2), 31–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2138696
  49. Winter, DA A. (1995). Human balance and posture control during standing and walking. Gait and Posture. https://doi.org/10.1016/0966-6362(96)82849-9
  50. Yoshimoto, Uchihara, H., Nomura, Y., & Yasuda, N. (2015). Associations between functional threshold power, autonomic activation and immune function in aerobically trained cyclists. Journal of Science and Medicine in Sport, 19, e67. https://doi.org/10.1016/j.jsams.2015.12.164
  51. Zemková, E. (2014). Sport-specific balance. Sports Medicine. Springer International publishing. https://doi.org/10.1007/s40279-013-0130-1