Skip to main navigation menu Skip to main content Skip to site footer

Fiber Angle influence and Toughness characterization of bioinspired discontinuous fiber helicoids composite materials produced via additive manufacturing

Influencia del ángulo de fibra y caracterización de la tenacidad de materiales compuestos helicoidales de fibra discontinua bioinspirados producidos mediante fabricación aditiva



Open | Download


Section
Articles

How to Cite
Fiber Angle influence and Toughness characterization of bioinspired discontinuous fiber helicoids composite materials produced via additive manufacturing. (2023). Revista EIA, 20(40), 4017 pp. 1-15. https://doi.org/10.24050/reia.v20i40.1657

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Pablo Zavattieri

Over millennia nature has produced composite materials with excellent mechanical properties compared to the low properties of their base materials and has managed to obtain a good compatibility between stiffness and toughness; as a result, they are a good source of inspiration for material optimization for applications, such as increasing toughness and damage resistance, something that is difficult in conventional engineering materials. Nowadays eight structural elements are identified in biological materials: fibrous, helicoidal, gradients, layered, tubular, cellular, suture, and overlapping. Helical structures consist of stacks of ordered fibers that form layers that are rotated at a constant angle of inclination. These include plywood and Bouligand structures. Bouligand structures consist of an arrangement of fibrous laminates that completes a 180° turn and provides some biological materials with increased strength and toughness in multiple directions and exceptionally high fracture toughness. The classical composite materials mechanics provides some constitutive model approximations for this type of materials, but they still need to be studied and tested to properly understand their behavior. Injection molding, compression molding, hand layup, resin transfer molding, filament winding, pultrusion, and automated fiber placement are just a few of the traditional methods used to make fiber-reinforced polymer composites (FRPC). However, these traditional manufacturing techniques have a restriction on specific fiber alignment and demand expensive molds, dies, or lithographic masks. Additive manufacturing has the potential to replace many conventional manufacturing processes due to its ability to create complex geometries with customizable material properties and employ several materials simultaneously, among other things. Fused deposition modeling (FDM) is the most widely used manufacturing additive technique for manufacturing FRPC due to its low cost, low energy input, material consumption, and operation simplicity. This work presents three-dimensional models mimicking the Bouligand structures by turning the pitch angle of the layers and a analytical models comparison were made. The specimens were fabricated using the FDM technique. A thermoplastic polyurethane (TPU) was used for the matrix and polylactic acid (PLA) for the fibers. Tensile tests were used to mechanically characterize both the raw materials and the manufactured composites to examine the impact of the helical angle and the contribution of the matrix and fiber materials to the stiffness and toughness of the composite. Experiments and analysis revealed that high rotation angles improve the stiffness, strength, and toughness of the composite.


Article visits 401 | PDF visits 253


Downloads

Download data is not yet available.
  1. Arias, L. S. and Vanegas, L. (2004) ‘Falla de los materiales compuestos laminados’, Scientia et Technica, (25), pp. 113–118.
  2. Autodesk (no date) Inventor: Poderoso software de diseño mecánico para tus ideas más ambiciosas.
  3. Barthelat, F. et al. (2007) ‘On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure’, Journal of the Mechanics and Physics of Solids, 55(2), pp. 306–337. doi: 10.1016/j.jmps.2006.07.007.
  4. Barthelat, F., Yin, Z. and Buehler, M. J. (2016) ‘Structure and mechanics of interfaces in biological materials’, Nature Reviews Materials, 1(16007), pp. 1–16. doi: 10.1038/natrevmats.2016.7.
  5. Bruet, B. J. F. et al. (2008) ‘Materials design principles of ancient fish armour.’, Nature materials. Nature Publishing Group, 7(9), pp. 748–56. doi: 10.1038/nmat2231.
  6. Carvajal Loaiza, M. J. et al. (2020) ‘Influencia de la posición de impresión y la densidad de relleno en las propiedades mecánicas de probetas fabricadas en ABS’, Revista Ingenierías Universidad de Medellín. Universidad de Medellín, 19(37), pp. 179–193. doi: 10.22395/RIUM.V19N37A9.
  7. Chen, P.-Y. et al. (2008) ‘Structure and mechanical properties of crab exoskeletons’, Acta Biomaterialia, 4(3), pp. 587–596. doi: 10.1016/j.actbio.2007.12.010.
  8. Chen, P.-Y. et al. (2012) ‘Predation versus protection: Fish teeth and scales evaluated by nanoindentation’, Journal of Materials Research, 27(1), pp. 100–112.
  9. Chen, S.-M. et al. (2022) ‘Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites’, Matter. Elsevier Inc., pp. 1–15. doi: 10.1016/j.matt.2022.02.023.
  10. Chen, S. M. et al. (2018) ‘Biomimetic twisted plywood structural materials’, National Science Review, 5(5). doi: 10.1093/nsr/nwy080.
  11. Cheng, L. et al. (2011) ‘Mechanical behavior of bio-inspired laminated composites’, Composites Part A, 42, pp. 211–220. doi: 10.1016/j.compositesa.2010.11.009.
  12. Cheng, L., Wang, L. and Karlsson, A. M. (2008) ‘Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior’, Journal materials research society, 23(11), pp. 2854–2872. doi: 10.1557/JMR.2008.0375.
  13. ‘Engineering for ENERGY INFRASTRUCTURE 4.0 TECHNOLOGY VITAL ENGINEERING Facultad de Ingeniería’ (no date).
  14. Fang, Z. et al. (2014) ‘Hierarchical structure and cytocompatibility of fish scales from Carassius auratus’, Materials Science and Engineering: C, 43, pp. 145–152. doi: 10.1016/j.msec.2014.07.015.
  15. Gao, W. et al. (2015) ‘The status, challenges, and future of additive manufacturing in engineering’, Computer-Aided Design, 69, pp. 65–89. doi: 10.1016/j.cad.2015.04.001.
  16. Gil-Duran, S., Arola, D. and Ossa, E. A. (2015) ‘Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus’, Journal of the Mechanical Behavior of Biomedical Materials, 56, pp. 134–145. doi: 10.1016/j.jmbbm.2015.11.028.
  17. Grunenfelder, L. K. et al. (2014) ‘Bio-inspired impact-resistant composites.’, Acta biomaterialia, 10(9), pp. 3997–4008. doi: 10.1016/j.actbio.2014.03.022.
  18. Guarín-Zapata, N. et al. (2015) ‘Shear wave filtering in naturally-occurring Bouligand structures.’, Acta biomaterialia, 23, pp. 11–20. doi: 10.1016/j.actbio.2015.04.039.
  19. Hu, C. et al. (2019) ‘Bioinspired surface modification of orthopedic implants for bone tissue engineering’, Biomaterials. Elsevier, 219(June), p. 119366. doi: 10.1016/j.biomaterials.2019.119366.
  20. Huang, Y. et al. (2015) ‘Additive manufacturing: Current state, future potential, gaps and needs, and recommendations’, Journal of Manufacturing Science and Engineering, Transactions of the ASME. American Society of Mechanical Engineers (ASME), 137(1).
  21. doi: 10.1115/1.4028725.
  22. Huang, Z.-M. et al. (2021) ‘Tensile Strength Prediction of Short Fiber Reinforced Composites’, Materials, 14(2708), pp. 1–22. doi: 10.3390/ma14112708.
  23. Ikoma, T. et al. (2003) ‘Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major’, Journal of Structural Biology. Academic Press, 142(3), pp. 327–333. doi: 10.1016/S1047-8477(03)00053-4.
  24. Ji, B. and Gao, H. (2004) ‘Mechanical properties of nanostructure of biological materials’, Journal of the Mechanics and Physics of Solids, 52(9), pp. 1963–1990. doi: 10.1016/j.jmps.2004.03.006.
  25. Kienzler, R., Ott, I. and Altenbach, H. (eds) (2004) Theories of Plates and Shells. Springer Berlin Heidelberg (Lecture Notes in Applied and Computational Mechanics). doi: 10.1007/978-3-540-39905-6.
  26. Körbelin, J. et al. (2021) ‘Damage tolerance and notch sensitivity of bio-inspired thinply Bouligand structures’, Composites Part C: Open Access. Elsevier, 5, pp. 1–14. doi: 10.1016/j.jcomc.2021.100146.
  27. Li, J. et al. (2022) ‘Spider Silk-Inspired Artificial Fibers’, Advanced Science. John Wiley and Sons Inc, 9(5). doi: 10.1002/ADVS.202103965.
  28. Liu, J. L. et al. (2022) ‘Effects of inter-ply mismatch angle on interlaminar properties and their influence in numerical simulations’, Composites Part A: Applied Science and Manufacturing. Elsevier Ltd, 154. doi: 10.1016/j.compositesa.2021.106795.
  29. Luo, Z. et al. (2018) ‘Modified rule of mixtures and Halpin-Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication’, Research Article Advances in
  30. Mechanical Engineering, 10(7), pp. 1–10. doi: 10.1177/1687814018785286.
  31. Meyers, M. A. et al. (2008) ‘Biological materials: Structure and mechanical properties’, Progress in Materials Science, 53(1), pp. 1–206. doi: 10.1016/j.pmatsci.2007.05.002.
  32. Meyers, M. A. and Hodge, A. M. (2008) Advances in Biological Materials and Biomaterials Science.
  33. Murcia, S. et al. (2016) ‘Effects of polar solvents on the mechanical behavior of fish scales’, Materials Science and Engineering: C. Elsevier, 61, pp. 23–31. doi: 10.1016/J. MSEC.2015.12.007.
  34. Ni, J. et al. (2021) ‘Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly’, Matter, 4(6), pp. 1919–1934. doi: 10.1016/j.matt.2021.03.023.
  35. Ouyang, W. et al. (2021) ‘Identifying optimal rotating pitch angles in composites with Bouligand structure’, Composites Communications. Elsevier Ltd, 23, p. 100602. doi: 10.1016/j.coco.2020.100602.
  36. Pérez, M. A. and Sánchez, M. (2014) Fundamentos de la mecánica de los materiales compuestos, Aplicaciones avanzadas de los materiales compuestos en la obra civil y la edificación. doi: 10.3926/oms.200.
  37. Reddy, J. N. (1999) ‘Theory and analysis of laminated composite plates’, in Mechanics of Composite Materials and Structures. Kluwer Academic Publishers, pp. 1–79. doi: 10.1007/978-94-011-4489-6_1.
  38. Salinas, C. and Kisailus, D. (2013) ‘Fracture mitigation strategies in gastropod shells’, JOM, 65(4). doi: 10.1007/s11837-013-0570-y.
  39. Shokrieh, M. M. and Moshrefzadeh-Sani, H. (2016) ‘On the constant parameters of Halpin-Tsai equation’, Polymer. Elsevier Ltd, 106, pp. 14–20. doi: 10.1016/j.polymer.2016.10.049.
  40. Suksangpanya, N. et al. (2018) ‘Crack twisting and toughening strategies in Bouligand architectures’, International Journal of Solids and Structures. Pergamon. doi: 10.1016/J.IJSOLSTR.2018.06.004.
  41. Torres, F. G. et al. (2008) ‘Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima Gigas’, Materials Science and Engineering: C, 28(8), pp. 1276–1283. doi: 10.1016/j.msec.2007.12.001.
  42. Ultimaker (no date) “Ultimaker Cura: software de impresión 3D potente y fácil de usar”.
  43. Wang, D. et al. (2020) ‘Fiber reorientation in hybrid helicoidal composites’, Journal of the Mechanical Behavior of Biomedical Materials. Elsevier Ltd, 110(June), p. 103914. doi: 10.1016/j.jmbbm.2020.103914.
  44. Weaver, J. C. et al. (2012) ‘The stomatopod dactyl club: A formidable damage-tolerant biological hammer’, Science, 336(6086), pp. 1275–1280. doi: 10.1126/science.1218764.
  45. Wu, K. et al. (2020) ‘Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity’, Proceedings of the National Academy of Sciences of the United States of America, 27(117), p. 8. doi: 10.1073/
  46. pnas.2000639117/-/DCSupplemental.
  47. Yang, F., Yi, F. and Xie, W. (2021) ‘The role of ply angle in interlaminar delamination properties of CFRP laminates’, Mechanics of Materials. Elsevier, 160, p. 103928. doi: 10.1016/J.MECHMAT.2021.103928.
  48. Yang, W. et al. (2014) ‘Protective role of Arapaima gigas fish scales: structure and mechanical behavior.’, Acta biomaterialia, 10(8), pp. 3599–614. doi: 10.1016/j.actbio.2014.04.009.
  49. Yang, W. et al. (2019) ‘Arapaima Fish Scale: One of the Toughest Flexible Biological Materials’, Matter. Elsevier Inc., 1(6), pp. 1557–1566. doi: 10.1016/j.matt.2019.09.014.
  50. Yin, S. et al. (2020) ‘Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids’, Cell Reports Physical Science. Elsevier BV, 1(7), p. 100109. doi: 10.1016/j.xcrp.2020.100109.
  51. Yuan, Y. et al. (2022) ‘Manipulating impact damage modes in composite laminates by helical pitch angle and ply thickness’, Engineering Fracture Mechanics. Elsevier Ltd, 265(December 2021), p. 108383. doi: 10.1016/j.engfracmech.2022.108383.
  52. Zelazny, B. and Neville, A. C. (1972) ‘Quantitative studies on fibril orientation in beetle endocuticle’, Journal of Insect Physiology. Pergamon, 18(11), pp. 2095–2121. doi: 10.1016/0022-1910(72)90243-0.
  53. Zhu, D., Ortega, C. F., et al. (2012) ‘Structure and Mechanical Performance of a “Modern” Fish Scale’, Advanced Engineering Materials, 14(4), pp. B185–B194. doi: 10.1002/adem.201180057.
  54. Zhu, D., Szewciw, L., et al. (2012) ‘Structure and Mechanical Performance of Teleost Fish Scales’, MRS Proceedings, 1420, pp. mrsf11-1420-oo01-05. doi: 10.1557/opl.2012.503.
  55. Zimmermann, E. A. et al. (2013) ‘Mechanical adaptability of the Bouligand-type structure in natural dermal armour’, Nature Communications. Nature Publishing Group, 4. doi: 10.1038/ncomms3634.