Skip to main navigation menu Skip to main content Skip to site footer

Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar

Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar



Open | Download


Section
Articles

How to Cite
Eliminación de fluoxetina presente en aguas contaminadas usando procesos fotoquímicos de oxidación avanzada y luz solar. (2019). Revista EIA, 16(32), 27-42. https://doi.org/10.24050/reia.v16i32.1081

Dimensions
PlumX
Citations
license

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Lis Manrique Losada
Carolina Quimbaya Ñañez
Ricardo Antonio Torres Palma

Lis Manrique Losada,

Nacida en Florencia Caquetá Colombia, Ingeniera Química, Magister e Ingeniería Química y estudiante de doctorado en Ingeniería Ambiental. Docente de la Universidad de la Amazonia y mis áreas de investigación son tratamiento de aguas residuales, reactores para el tratamiento de aguas, procesos de oxidación avanzada para el tratamiento de aguas.

Carolina Quimbaya Ñañez,

Química de la Universidad de la Amazonia

Ricardo Antonio Torres Palma,

Químico y M.Sc. en Ciencias Química ambos de la Universidad del Valle (Cali-Colombia), Ph.D. en Química de la Universite de Savoie en Chambery, Francia, postdoctorado en Toronto University en Toronto, Canadá.  Coordinador del Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB) y profesor del Instituto de Química de la Universidad de Antioquia (Medellín-Colombia)

Se estudió comparativamente la degradación de la fluoxetina por medio de tres procesos fotoquímicos de oxidación avanzada: foto Fenton (FFS), foto electro Fenton (FEFS) y fotocatálisis con TiO2 (FCS), mediados por radiación solar. Los experimentos se desarrollaron con soluciones de 100 mL en un vaso de reacción y para el caso de FEFS, se equipó el reactor con un ánodo de IrO2/RuO2 y un cátodo de grafito de difusión de aire para producción continua de peróxido. En todos los casos se hizo seguimiento de la degradación, la mineralización de la fluoxetina y la toxicidad. El proceso FFS presentó la mayor velocidad de degradación y mineralización, así como las mayores eficiencias en la degradación y mineralización. El pH en el proceso FFS definió el alcance de la mineralización, evidenciando que a pH ácido se logra mayor mineralización pues se evita la formación de complejos e hidróxidos típicos de un pH mayor. El proceso FCS presenta alta eficiencia, pero cinéticas lentas. La toxicidad ante levadura de cerveza disminuye a medida que se generan subproductos de degradación en todos los procesos evaluados. 


Article visits 837 | PDF visits 589


Downloads

Download data is not yet available.
  1. Affam, A. C., Chaudhuri, M., Kutty, S. R. M., & Muda, K. (2014). UV Fenton and sequencing batch reactor treatment of chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater. International Biodeterioration & Biodegradation, 93, 195–201. https://doi.org/10.1016/j.ibiod.2014.06.002
  2. Bandala, V. E. E. R., Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., Rodriguez, J. J., … Wang, Y. (2010). Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–54. https://doi.org/10.1016/j.watres.2009.09.059
  3. Castro, A. De, Concheiro, M., Quintela, Ó., & Cruz, A. (2005). Detección de fluoxetina y su metabolito activo norfluoxetina mediante LC-MS en plasma y saliva . Revista de Toxicología, 22(Su1), 142–149.
  4. De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–57. https://doi.org/10.1016/j.watres.2012.01.014
  5. Feng, H. E., & Le-cheng, L. E. I. (2004). Degradation kinetics and mechanisms of phenol in photo-Fenton process *, 5(2), 198–205.
  6. Flores, N., Sirés, I., Garrido, J. A., Centellas, F., Rodríguez, R. M., Cabot, P. L., & Brillas, E. (2015). Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Journal of Hazardous Materials, 1–10. https://doi.org/10.1016/j.jhazmat.2015.11.040
  7. Giraldo-Aguirre, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). TiO2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. Journal of Photochemistry and Photobiology A: Chemistry, 311, 95–103. https://doi.org/10.1016/j.jphotochem.2015.06.021
  8. Giraldo, A. L., Peñuela, G. a., Torres-Palma, R. a., Pino, N. J., Palominos, R. a., & Mansilla, H. D. (2010). Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Research, 44(18), 5158–5167. https://doi.org/10.1016/j.watres.2010.05.011
  9. Guzmán, J., Mosteo, R., Sarasa, J., Alba, J. A., & Ovelleiro, J. L. (2016). Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Separation and Purification Technology, 164, 155–162. https://doi.org/10.1016/j.seppur.2016.03.025
  10. Honda, V., Silva, O., Paula, A., Silva, A. C., Teixeira, C.,
  11. Borrely, S. I., … Costa, S. (2016). Degradation and acute toxicity removal of the antidepressant Fluoxetine ( Prozac ® ) in aqueous systems by electron beam irradiation. Environmental Science and Pollution Research, 11927–11936. https://doi.org/10.1007/s11356-016-6410-1
  12. Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833–840. https://doi.org/10.1016/j.watres.2012.11.008
  13. Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at µg L-1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. https://doi.org/10.1016/j.watres.2009.09.059
  14. Li, W., Nanaboina, V., Zhou, Q., & Korshin, G. V. (2011). Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Research, 46(2), 403–412. https://doi.org/10.1016/j.watres.2011.11.002
  15. Luna, R. A., Zermeño, B. B., Moctezuma, E., Contreras, R. E., Leyva, E., & López B, M. A. (2013). FOTODEGRADACIÓN DE OMEPRAZOL EN SOLUCIÓN ACUOSA UTILIZANDO TiO2 COMO CATALIZADOR. Revista Mexicana de Ingeniería Química, 12(1), 85–95.
  16. Méndez-Arriaga, F., Otsu, T., Oyama, T., Gimenez, J., Esplugas, S., Hidaka, H., & Serpone, N. (2011). Photooxidation of the antidepressant drug Fluoxetine ( Prozac ® ) in aqueous media by hybrid catalytic / ozonation processes. Water Research, 45, 2782–2794. https://doi.org/10.1016/j.watres.2011.02.030
  17. Perini, J. A. D. L., Costa, B., Tonetti, A. L., & Nogueira, R. F. P. (2016). Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7416-4
  18. Pimentel, M., Oturan, N., Dezotti, M., & Oturan, M. A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, 83, 140–149. https://doi.org/10.1016/j.apcatb.2008.02.011
  19. Salazar, C., Ridruejo, C., Brillas, E., Yáñez, J., Mansilla, H. D., & Sirés, I. (2016). Abatement of the fluorinated antidepressant fluoxetine ( Prozac ) and its reaction by electrochemical advanced methods. “Applied Catalysis B, Environmental.” https://doi.org/10.1016/j.apcatb.2016.10.026
  20. Serna-galvis, E. A., Silva-agredo, J., Giraldo, A. L., Flórez-acosta, O. A., & Torres-palma, R. A. (2016). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton , TiO 2 -photocatalysis and electrochemical processes. Science of the Total Environment, The, 541, 1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029
  21. Su, C., Bellotindos, L. M., Chang, A., & Lu, M. (2013). Degradation of acetaminophen in an aerated Fenton reactor. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 309–315. https://doi.org/10.1016/j.jtice.2012.11.009
  22. Su, C. C., Chang, A. T., Bellotindos, L. M., & Lu, M. C. (2012). Degradation of acetaminophen by Fenton and electro-Fenton processes in aerator reactor. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2012.07.004
  23. Villegas-Guzman, P., Silva-Agredo, J., González-Gómez, D., Giraldo-Aguirre, A. L., Flórez-Acosta, O., & Torres-Palma, R. a. (2015). Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 50(1), 40–8. https://doi.org/10.1080/10934529.2015.964606
  24. Zayat, M., Garcia-parejo, P., & Levy, D. (2007). Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating, 1270–1281. https://doi.org/10.1039/b608888k
  25. Zhao, Y., Yu, G., Chen, S., Zhang, S., Wang, B., Huang, J., & Wang, Y. (2017). Ozonation of antidepressant fluoxetine and its metabolite product norfluoxitine : Kinetics , intermediates and toxicity. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.02.032