ABSORCIÓN DE DOS FOTONES EN POZOS CUÁNTICOS FORMADOS CON GaAs DOPADO CON ALUMINIO.
ABSORCIÓN DE DOS FOTONES EN POZOS CUÁNTICOS FORMADOS CON GaAs DOPADO CON ALUMINIO.

Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
En este trabajo mostramos como la absorción de dos fotones es modificada debido a la fracción molar de aluminio dopante presente en los pozos cuánticos formados con arseniuro de galio. Se realizó el estudio teniendo en cuenta el índice de refracción que depende de la fracción molar de aluminio dopante y de la longitud de onda de la luz que incide sobre los pozos. Los resultados sugieren como manipular los parámetros de diseño para mejora el desempeño de un dispositivo foto-detector idóneo para longitudes de onda de 1.310 nm y 1.550 nm.
Article visits 423 | PDF visits 255
Downloads
- Adachi, S. (1985). GaAs, AlAs, and AlxGa1-xAs@B: Material parameters for use in research and device applications. J. Appl. Phys 58, pp. R1-R29.
- Chuang, S. L. (2009). “Refractive Index of AlGaAs System”. En: Physics of Photonic Devices. Segunda edición. New Jersey, Ed Wiley Series in Pure and Applied Optics, 2009. pp. 264-265.
- Colace, L; Masini, G; Altieri, A; Assanto, G. (2006). Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon. IEEE Photon. Technol. Lett 18 (9), pp. 1094–1096.
- Fishman, D. A; Cirloganu, C. M; Webster, S; Padilha, L. A; Monroe, M; Hagan, D. J; Van Stryland, E. W. (2011) Sensitive Mid-Infrared Detection in Wide-Bandgap Semiconductors Using Extreme Non-Degenerate Two Photon Absortion. Nat Photonics 5, pp. 561-565.
- Ren, S; Rong, Y; Claussen, S.A; Schaevitz, R.K; Kamins, T.I; Harris, J.S; Miller, D. A. B. (2011). Thin dielectric spacer for the monolithic integratioun of bulk germanium or germanium quantum wells with silicon-on-insulator waveguides. IEEE Photon. J 3 (4), pp. 739-747.
- Pattanaik, H. S; Reichert, M; Khurgin, J. B; Hagan, D. J; Van Stryland, E. W. (2016). Enhancement of Two-Photon Absortion in Quantum Wells for Extremely Nondegenerate Photon Pairs. IEEE J Quantum Elect 52.
- Villeneuve, A; Kang, J. U; Aitchison, J. S; Stegeman, G. I. (1995). Unity ratio of cross to selfphase modulation in bulk AlGaAs and AlGaAs/GaAs multiple quantum well waveguides at half the band gap. App. Phy. Lett 67, pp. 760-762.
- Wagner, S. J; Meier, J; Helmy, A. S; Aitchison, J. S; Sorel, M; Hutchings, D. C. (2007) Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap, J. Opt. Soc. Am. B 24, pp. 1557-1563.
- Xia, C; Spector, H.N. (2009). Nonlinear Franz–Keldysh effect: Two photon absorption in semiconducting quantum wires and quantum boxes. Journal of Applied Physics 106(124302), pp. 1-6.