El Método de Newton para raíces complejas. Fractales en el problema de Cayley.
El Método de Newton para raíces complejas. Fractales en el problema de Cayley

Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Cuando la búsqueda de la solución de un problema de aplicación implica la resolución de ecuaciones no lineales se hace uso de métodos numéricos. Siendo el método de Newton uno de los más usados debido a su versatilidad y agilidad, es de gran interés emplearlo especialmente para aproximar soluciones de sistemas de ecuaciones no lineales. Solucionar ecuaciones con variable compleja a través del método de Newton tiene una aplicación muy interesante en el campo de los fractales como es la del problema de Cayley y las figuras fractales que se producen a partir de la convergencia, divergencia e incluso la eficiencia del método. En este artículo se muestra el estudio del problema de Cayley a través de la generalización del método de Newton a. Además, se presentan algunos fractales producidos por iteraciones del método de Newton en los complejos.
Article visits 2544 | PDF visits 490
Downloads
- Burden, R. y Faires, D. Análisis Numérico, séptima edición, México, lnternational Thomson Editores, (2002), pp. 66-74.
- Gutiérrez, J.; Olmos, M. y Casillas, J. Análisis Numérico, México, Interamericana Editores, (2010), pp. 30-37.
- Mora, W. (2010). Introducción a los métodos numéricos [e-book]. Costa Rica, Escuela de Matemática - Instituto Tecnológico de Costa Rica: Disponible en https://tecdigital.tec.ac.cr/revistamatematica/Libros/WMora_MetodosNumericos/WMora-ITCR-MetodosNumericos.pdf [Consultado 30 de enero de 2017]
- Pita, C. Cálculo Vectorial, México, Escuela de Ingeniería - Universidad Panamericana, (1995), pp. 319-331.
- Plazas-Salinas, S. y Gutiérrez-Jiménez, J. (2013). Dinámica del Método de Newton [e-book], España: Universidad de la Rioja, servicio de publicaciones. Disponible en: Dialnet https://dialnet.unirioja.es/servlet/libro?codigo=529750 [Consultado 25 de noviembre de 2016].
- Rubiano, G. (2007). Método de Newton, Mathematica y Fractales: Historia de una Página. Boletín de matemáticas, 14(1), pp. 44-63, [Online] Disponible en http://www.bdigital.unal.edu.co/38088/1/40459-181969-1-PB.pdf. [Consultado 25 de enero de 2017]
- Sauer, T. Análisis Numérico, Segunda edición, México, Pearson Educación, (2013), pp. 51-58.
- Sutherland S. (2014). An Introduction to Julia and Fatou Sets. In: Bandt C., Barnsley M., Devaney R., Falconer K., Kannan V., Kumar P.B. V. (eds) Fractals, Wavelets, and their Applications. Springer Proceedings in Mathematics & Statistics, [e-book]. Springer. Disponible en https://www.researchgate.net/publication/287394590_An_Introduction_to_Julia_and_Fatou_Sets. [Consultado 25 de enero de 2017]