Skip to main navigation menu Skip to main content Skip to site footer

Geographical Information Systems as a Tool to Assist the Electricity Distribution Networks Planning

Geographical information systems as a Tool to assist the electricity distribution Networks planning



Open | Download


Section
Articles

How to Cite
Geographical Information Systems as a Tool to Assist the Electricity Distribution Networks Planning. (2018). Revista EIA, 15(29), 71-85. https://doi.org/10.24050/reia.v15i29.1138

Dimensions
PlumX
Citations
license

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Mario Andres Mejia Alzate
Joel David Melo Trujillo
Antonio Padilha Feltrin
Carmen Cecilia Sánchez Zuleta
Juan Pablo Fernández Gutiérrez

Mario Andres Mejia Alzate,

Estudiante investigador Universidad Estadual Paulista – UNESP Campus de Ilha Solteira. Av: Brasil, 56, Centro, 15385-000, Ilha Solteira - SP, Brasil. 


Joel David Melo Trujillo,

Profesor Adjunto Universidad Federal do ABC – UFABC Campus de Santo André. Av: dos Estados, 5001, Barrio Santa Terezinha, 09210-580, Santo André - SP, Brasil. 


Antonio Padilha Feltrin,

Professor titular Universidad Estadual Paulista – UNESP Campus de Ilha Solteira. Av: Brasil, 56, Centro, 15385-000, Ilha Solteira - SP, Brasil.

Professor visitante Universidad Federal do ABC – UFABC Campus de Santo André. Av: dos Estados, 5001, Barrio Santa Terezinha, 09210-580, Santo André - SP, Brasil. 


Carmen Cecilia Sánchez Zuleta,

Profesora vinculada Universidad de Medellín– U de M. Medellín, carrera 87 # 30-65. Barrio Belén, - Antioquia, Colombia. 


Juan Pablo Fernández Gutiérrez,

Profesor vinculado Universidad de Medellín– U de M. Medellín, carrera 87 # 30-65. Barrio Belén, - Antioquia, Colombia. 


In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide information to the distribution planners. This work shows computational tools that will help distribution utilities, using techniques available in geographic information systems to characterize the local factors in concession zone of the distribution utilities.

Article visits 1262 | PDF visits 422


Downloads

Download data is not yet available.
  1. Bibliographic references
  2. • Books
  3. DIGGLE, P. and RIBEIRO, P. J. Model – based Geostatistics. Springer Series in Statistics. Editorial Springer., New York, 2007.
  4. FOTHERINGHAM, A. S.; BRUNSDON, C. and CHARLTON M. Geographically Weighted Regression. The analysis of spatially varying relationships. Editorial WILEY, England, 2002.
  5. GONEN, T. Electric power distribution system engineering. Boca Raton: CRC Press, 2014.
  6. KAGAN, N. Redes elétricas inteligentes no Brasil: análise de custos e benefícios de um plano nacional de implantação. Rio de Janeiro: Synergia Editora, 2013. 260 pag.
  7. GUTIERREZ, J. and GOULD, M. SIG: Sistemas de Información Geográfica. Editorial Síntesis S.A., Madrid, 1994.
  8. CAMARA, G. E. A. Mapping Social Exclusion/Inclusion in Developing Countries: social Dynamics of São Paulo in th 1990s. In: GOODCHILD, M. F.; JANELLE, D. G. Spatially integrated social science. New York: : Oxford University Press, 2004. Cap. 11, p. 223-237.
  9. MIRANDA, J. I. Fundamentos de sistemas de informações geográficas. 4a. ed. [S.l.]: [s.n.], 2015.
  10. SILVA, A. D. B. Sistemas de informações geo-referenciadas: conceitos e fundamentos. [S.l.]: [s.n.], 2003.
  11. SILVA LORA, E. E. e ADDAD, J. Geração distribuída: aspectos tecnológicos, ambientais e institucionais. Rio de Janeiro: Inter ciência, 2006.
  12. • Dissertations
  13. MEJIA ALZATE, M. Previsão Espaço-temporal de demanda incluindo alterações nos hábitos de consumidores residenciais. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 78. 2017.
  14. Disponível em: <http://hdl.handle.net/11449/148538>
  15. VILLAVICENCIO GASTELU, J. Análise Espacial do potencial fotovoltaico em telhados de residência usando modelagem hierárquica bayesiana. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 101. 2016.
  16. Disponível em: <http://hdl.handle.net/11449/137801>.
  17. • Articles
  18. ACEVEDO, I. y VELÁSQUEZ, E. “Algunos conceptos de la econometría espacial y el análisis exploratorio de datos espaciales”. Ecos de Economía. Num 27. Medellín, Colombia 2008.
  19. Disponible en:
  20. <http://publicaciones.eafit.edu.co/index.php/ecos-economia/article/viewFile/705/627>
  21. ARANEDA E. “Uso de Sistemas de Información Geográficos y análisis espacial en arqueología: Proyecciones y limitaciones”. Estudios Atacameños. Num. 22, pag. 59-75 Santiago, Chile 2002.
  22. Disponible en: < http://dx.doi.org/10.4067/S0718-10432002002200004 >
  23. BUZAI, G. D. “Modelos de localización-asignación aplicados a servicios públicos urbanos: análisis espacial de Centros de Atención Primaria de Salud (caps) en la ciudad de Luján, Argentina”. Cuadernos de geografía: revista colombiana de geografía. Vol. 20, Num. 2, pag. 111 – 123 Bogotá, 2011.
  24. COMBER, A. J.; BRUNSDON, C.; HARDY, J. and RADBURN, R. “Using a GIS–based network analysis and optimisation routines to evaluate service provision: a case study of the UK”. Post Office Applied Spatial Analysis and Policy. Vol. 2, Num. 1, pag. 47 – 64, 2009.
  25. COMBER, A.; DICKIE, J.; JARVIS, C.; PHILLIPS, M. and TANSEY, K. “Locating bioenergy facilities using a modified GIS-based location-allocation-algorithm: considering the spatial distribution of resource supply, unpublishing submitted paper”. Department of Geography, University of Leicester, Leicester, LE1 7RH, UK (2015)
  26. Availavel in:
  27. <https://lra.le.ac.uk/bitstream/2381/32346/4/Comber_AE_submission_March_2015.pdf.>
  28. COMBER, A. J.; SASAKI, S.; SUZUKI, H. and BRUNSDON, C. “A modified grouping genetic algorithm to select ambulance site locations”. International Journal of Geographical Information Science, Vol. 25, Num. 5, pag. 807 – 823, 2011.
  29. CHURCH, R. and REVELLE, C. “The maximal covering location problem”. Papers in Regional Science, Vol. 32, Num. 1, pag. 101 – 118, 1974.
  30. HAKIMI, S. “Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph”. Operations Research, Vol. 12, pag. 450 – 459, 1964.
  31. HAMMONS, T. J. “Renewable energy alternatives for developed countries”. IEEE Transactions on Energy Conversion, Piscataway, Vol. 15, Num. 4, pag. 481-493, 2000.
  32. HO, C. and K. C. “Impact of grid-connected residential PV systems on the Malaysia low voltage distribution network”. IEEE conference, Power engineering and optimization, Langkawi Island, Malaysia. pag. 670 – 675. , 2013.
  33. LEOU, R. C.; TENG, J. H. and SU, C. L. “Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements”. IET Generation, Transmission & Distribution , Vol. 9, Num. 11, pag. 1112 - 1119, August 2015.
  34. MEJIA, M. A.; MELO, J. D.; ZAMBRANO-ASANZA, S. e FELTRIN, A. P. “Regressão Ponderada Geograficamente para estimar a distribuição espacial do potencial de mercado de um eletrodoméstico com alto consumo de energia elétrica”. Congresso Brasilero de Automatica [S.l.]: CBA. 2016.
  35. MELO, J. D.; ZAMBRANO-ASANZA, S. and PADILHA-FELTRIN, A. “A local search algorithm to allocate loads predicted by spatial load forecasting studies”. Electric Power System Research, Vol. 146, pag. 206–217, May 2017.
  36. OWEN, S. H., AND DASKIN, M. S. “Strategic facility location: A review”. European Journal of Operational Research, Vol. 111. Num. 3, pag. 423 - 447, 1998.
  37. QUIROS-TORTOS, J.; VALVERDE, G.; ARGÜELLO, A. and OCHOA, L. N. “Geo-Information Is Power: Using Geographical Information Systems to Assess Rooftop Photovoltaics in Costa Rica”. IEEE Power and Energy Magazine, Vol. 15, Num. 2, pag. 48 - 56, March 2017.
  38. Available in: https://www.researchgate.net/publication/314200428_Geo-Information_Is_Power_Using_Geographical_Information_Systems_to_Assess_Rooftop_Photovoltaics_in_Costa_Rica
  39. REVELLE, C. S. and SWAIN, R. W. “Central facilities location”. Geographic Analysis, Vol. 2, pag. 30 - 42, 1970.
  40. RUBIO BARROSO, A. y GUTIERREZ, J. “Los Sistemas de Información Geográficos: Origen y perspectivas”. Revista General de Información y Documentación, Vol. 7, Num. 1. Servicio de Publicaciones Universidad Complutense. Madrid. 1997
  41. Disponible en:
  42. http://revistas.ucm.es/index.php/RGID/article/viewFile/RGID9797120093A/10990
  43. SASAKI, S.; COMBER, A. J.; SUZUKI, H. and BRUNSDON, C. “Using genetic algorithms to optimise current and future health planning - the example of ambulance locations”. International Journal of Health Geographics, Vol. 9, pag. 4 - 12, 2010.
  44. Availavel in < doi:10.1186/1476-072X-9-4>
  45. SASAKI, S.; IGARASHI, K.; FUJINO, Y.; COMBER, A. J.; BRUNSDON, C.; MULEYA, C. M. and SUZUKI, H. “The impact of community-based outreach immunization services on immunization coverage with GIS network accessibility analysis in peri-urban areas, Zambia”. Journal of Epidemiology and Community Health, Vol 65, pag. 1171-1178, 2011.
  46. Availavel in
  47. SHU, J. A new method for spatial power network planning in complicated environments. IEEE Transactions on Power Systems , Vol. 27, Num. 1, pag. 381-389, Feb. 2012.
  48. VILLAVICENCIO, J.; MELO, J. D. and FELTRIN, A. P. “Estimation of photovoltaic potential on residential rooftops using empirical Bayesian estimator”. IEEE PES Innovation Smart Grid Technologies Latin America – ISGT LATAM. [S.l.]: IEEE. 2015.
  49. WATSON, J. D. “Impact of solar photovoltaics on the low-voltage distribution network in New Zealand”. IET Generation, Transmission & Distribution, Stevenage, Vol. 10, Num. 1, pag. 1-9, 2016.
  50. WEI, W. “Expansion Planning of Urban Electrified Transportation Networks: A Mixed-Integer Convex Programming Approach”. IEEE Transactions on Transportation Electrification, Vol. 3, Num. 1, pag. 210 - 224, March 2017.
  51. ZAHEDI, A. “Australian renewable energy progress”. Renewable and Sustainable Energy Reviews, Oxford, Vol. 14, Num. 8, pag. 2208–2213, 2010.
  52. • Websites
  53. RENEWABLES 2015 GLOBAL STATUS REPORT. Renewable energy policy network for the 21th century (REN21), 2015. Disponível em :
  54. <http://www.nrel.gov/docs/fy08osti/42306.pdf>. Acesso em: 10 jun. 2017.