Skip to main navigation menu Skip to main content Skip to site footer

Los grupos de interés en la programación de producción de un sistema de manufactura “Job Shop”

Los grupos de interés en la programación de producción de un sistema de manufactura “Job Shop”



Open | Download


Section
Articles

How to Cite
Los grupos de interés en la programación de producción de un sistema de manufactura “Job Shop”. (2019). Revista EIA, 16(32), 65-84. https://doi.org/10.24050/reia.v16i32.1236

Dimensions
PlumX
Citations
license

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Germán Augusto Coca Ortegón
Omar Danilo Castrillón Gómez
Santiago Ruiz Herrera

Germán Augusto Coca Ortegón,

Profesor Ingeniería Industrial.

Universidad Escuela de Ingeniería de Antioquia.


Omar Danilo Castrillón Gómez,

Ingeniero de Sistemas.
Especializaciòn en alta gerencia.
Doctor en Bio-Ingenierìa.


Santiago Ruiz Herrera,

Ingenierìa Industrial.
Especializaciòn en Salud Ocupacional.
Doctor en Ingenierìa - Industria y Organizaciones.


En este artículo, se integran durante el proceso de programación de un sistema de manufactura tipo “Job Shop”, algunas expectativas de los siguientes grupos de interés: proveedores, sociedad, colaboradores de la organización,  clientes y accionistas. De esta forma, se diseña un proceso de evaluación multiobjetivo,  por medio  del cual se pretende la minimización simultánea del conjunto de variables presentadas a continuación: tiempo proceso, emisiones dióxido de carbono, nivel de fatiga, factor global desperdicio y costos de producción.  Asimismo, se expresa que el método propuesto, se encuentra fundamentado en la selección de aquellos individuos, cuyo grado de cercanía a determinados puntos de referencia, sea el máximo posible. Es así como, el desempeño del método anterior (método puntos referencia), se coteja con el desempeño de cierto método multiobjetivo, basado en análisis de subgrupos (método subgrupos).  Al respecto, se observa que el primer método muestra, mayor capacidad para detectar la fluctuación estadística inherente a los datos.  De este modo, se establece que el “método puntos referencia” supera el desempeño del “método subgrupos”, en cuanto al comportamiento de los parámetros “coeficiente de variación” y “rango”, para el caso de 4 (tiempo proceso, emisiones dióxido carbono,  nivel  fatiga, costos producción) de las 5 variables analizadas.


Article visits 618 | PDF visits 416


Downloads

Download data is not yet available.
  1. • Azadeh, A.; Goldansaz, S. y Zahedi-Anaraki, A. (2016). “Solving and optimizing a bi-objective open shop scheduling problem by a modified genetic algorithm”. International Journal of Advanced Manufacturing Technology, vol. 85, pp. 1603-1613.
  2. • Coca, G.; Castrillón, O. y Ruiz, S. (2013). “Metodología basada en los algoritmos VEGA y MOGA para solucionar un problema multi-objetivo en un sistema de producción Job Shop”. Revista EIA, vol. 13, pp. 175-191.
  3. • Deb, K. y Jain, H. (2014). “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints”. IEEE Transactions on Evolutionary Computation, vol. 18, No. 4, pp. 577-601.
  4. • Haider, A. y Mirza, J. (2015). “An implementation of lean scheduling in a job shop environment”. Advances in Production Engineering & Management, vol. 10, No. 1, pp. 5-17.
  5. • Hao, X.; Gen, M.; Lin, L. y Suer, G. (2017). “Effective multiobjective EDA for bi-criteria stochastic Job-Shop scheduling problem”. Journal of intelligent Manufacturing, vol. 28, No. 3, pp. 833-845.