Estados electrónicos de puntos cuánticos piramidales y cónicos
Estados electrónicos de puntos cuánticos piramidales y cónicos

Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Article visits 413 | PDF visits 317
Downloads
- Andrade C. G, Cabral Filho P. E., Tenório D. PL, Santos B. S., Beltrao E. IC, Fontes A., Carvalho L. B. (2013). Evaluation of Glycophenotype in Breast Cancer by Quantum Dot-lectin Histochemistry. Int. J. Nanomed. 8, pp 4623 – 4629.
- Bahramiyan H. (2018). Electric field y impurity effect on nonlinear optical rectification of a double cone like quantum dot. Opt. Mater 75, pp 187 - 195.
- Baier M. H., C. Constantin, Pelucchi E., y Kapon E. (2004). Electroluminescence from a single pyramidal quantum dot in a light-emitting diode. Appl. Phys. Lett. 84, pp 1967 - 1969.
- Bailey R. E., Smith A. M. y Shuming N. (2004). Quantum dots in biology and medicine. Physica E 25, pp 1 - 12.
- COMSOL Multiphysics, v. 5.2a. COMSOL AB, Stockholm, Sweden.
- Cunha C.R.A., Oliveira A.D.P.R., Firmino T.V.C., Tenório D.P.L.A., Pereira G., Carvalho L.B., Santos B.S., Correia M.T.S., Fontes A. (2018). Biomedical Applications fo Glyconanoparticles Based on Quantum Dots, Biochim. Biophys. Acta, 1862, pp 427 – 439.
- Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. y Monsalve-Calderón K. (2017). Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots, J. Nanosci. Nanotechno. 17, pp 1140- 1148.
- Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. (2017). Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots, Physica B 507, pp 76-83.
- Hayrapetyan D. B., Kazaryan E. M. y Sarkisyan H. A. (2016). Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED. Opt. Commun. 371, pp 138 - 143.
- Huggenberger A., Schneider C., Drescher C., Heckelmann S., Heindel T., Reitzenstein S., Kamp M., Hofling S., Worschech L. y Forchel A. (2011). Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices J. Cryst. Grown 323, pp 194 - 197.
- Jadupati Nag, Rawat K., Asokan K., Kanjilal D., Bohidar H.B. (2018). Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E 17, pp 13181 - 13200.
- Jarlov C., Gallo P., Calic M., Dwir B., Rudra A. (2012). Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 101, pp 191101-1 191101-4.
- Khordad R. y Bahramiyan H. (2014). Optical Properties of a GaAs Cone-Like Quantum Dot: Second and Third Harmonic Generation. Opt. Spectrosc. 117, pp 447- 452.
- Khordad R., Bahramiyan H. y Mohammadi S.A. (2016). Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chinese J. Phys. 54, pp 20 – 32.
- Lozovski V. y Piatnytsia V. (2011). The Analytical Study of Electronic and Optical Properties of Pyramid-Like and Cone-Like Quantum Dots. J. Comput. Theor. Nanos. 8, pp 1–9.
- Luhluh K. J., Boda A., Shankar I. V., Raju Ch. N. y Chatterjee A. (2018). Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers. Sci. Rep-Uk 8, pp 5073 - 5086.
- Manoj K. M., Hofsass H. C. y Vetter U. (2016). Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications. Intech., 298, pp 109 - 131.
- Norris D. J. y Bawendi M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B, 53, pp 16338 – 16346.
- Pickering S., Kshirsagar A., Ruzyllo J., and Xu J. (2012). Patterned mist deposition of tri- colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron Rev. 20, pp 148 - 152.
- Ponnusamy B., Sharmistha S., y Avadhesha S. (2007). Sugar-Quantum Dot Conjugates for a Selective and Sensitive Detection of Lectins. Bioconjugate Chem. 18, pp 146 – 151.
- Safeera T.A., Khanal R., Medvedeva J. E., Martinez A. I., Vinitha G., Anila E.I. (2018). Low temperature synthesis and characterization of zinc gallate quantum dots for optoelectronic applications. J. Alloy Compd. 740, pp 567 - 589.
- Sagadevan S. y Dakshanamoorthy A. (2012). Nanomaterials for Nonlinear Optical (NLO) Applications: A Review. Rev. Adv. Mater. Sci. 30, pp 243–253.
- Yamaguchi M., Asano T., y Noda S. (2008). Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express. 16, pp 18067 - 18081.
- Zrazhevskiy P. y Xiaohu G. (2009). Multifunctional quantum dots for personalized medicine. Nano Today. 4, pp 414 – 428.