Skip to main navigation menu Skip to main content Skip to site footer

AlPO-5 and SAPO-5 hydrothermal synthesis and catalytic propylen oligomerization

Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno



Open | Download


Section
Articles

How to Cite
AlPO-5 and SAPO-5 hydrothermal synthesis and catalytic propylen oligomerization. (2020). Revista EIA, 17(33), 33002 pp. 1-11. https://doi.org/10.24050/reia.v17i33.1260

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Jorge Ruiz Llano
Juan Camilo Arroyave Manco
Adriana Patricia Echavarría Izasa

Jorge Ruiz Llano,

Facultad de Ingeniería. Estudiante de Maestría en Ingeniería

Johana Catalina Arboleda Echavarría,

PhD Ciencias Químicas


Adriana Patricia Echavarría Izasa,

PhD Ciencias Químicas


Aluminophosphates and silicoaluminophospates are molecular sieves families with ordered pore systems with an alternative accommodation of AlO4 and PO4. This molecular sieves can be use like catalyst in propylen oligomerization reaction due their textural properties and selectivity toward some products for contribute to obtaining olefins of carbon chains longer achieving thus the synthesis of sulfur free liquid fuels. In this work, AlPO-5 and SAPO-5 were synthetize and was evaluated its catalytic activity in propylen oligomerization. Molecular sieves obtained were characterized by x-ray diffraction (XRD), thermal gravimetric analysis (TGA), atomic absorption spectrometry (AA), ammonia temperature programmed desorption (NH3-TPD) and scanning electronic microscopy (SEM). The reaction products were analyzed by gas chromatography (GC). A higher yield was obtained in the proportion of heavy oligomers after impregnation of Cr and Ni on AlPO-5, being Cr 3% AlPO-5 the catalyst with the highest yield.


Article visits 489 | PDF visits 320


Downloads

Download data is not yet available.
  1. Amrute, A. P., Mondelli, C., & Pérez-Ramírez, J. (2012). Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science & Technology, 2(10), 2057. https://doi.org/10.1039/c2cy20185b
  2. Bellussi, G., Mizia, F., Calemma, V., Pollesel, P., & Millini, R. (2012). Oligomerization of olefins from Light Cracking Naphtha over zeolite-based catalyst for the production of high quality diesel fuel. Microporous and Mesoporous Materials, 164, 127–134. https://doi.org/10.1016/j.micromeso.2012.07.020
  3. Blas, L., Dorge, S., Dutourni??, P., Lambert, A., Chiche, D., Bertholin, S., & Josien, L. (2015). Study of the performances of an oxygen carrier: Experimental investigation of the binder’s contribution and characterization of its structural modifications. Comptes Rendus Chimie, 18(1), 45–55. https://doi.org/10.1016/j.crci.2014.07.005
  4. Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31 , and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy, 56, 267–278.
  5. Burton, A. W., Ong, K., Rea, T., & Chan, I. Y. (2009). On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117(1–2), 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010
  6. Cheng, T., Xu, J., Li, X., Li, Y., Zhang, B., Yan, W., … Xu, R. (2012). Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO 4-11. Microporous and Mesoporous Materials, 152, 190–207. https://doi.org/10.1016/j.micromeso.2011.11.034
  7. Dang, T. T. H., Hoang, D.-L., Schneider, M., Hunger, M., & Martin, A. (2014). Impact of Conventional and Microwave Heating on SAPO-5 Formation and Brønsted Acidic Properties. Zeitschrift Für Anorganische Und Allgemeine Chemie, 640(8–9), 1576–1584. https://doi.org/10.1002/zaac.201400014
  8. Hu, Z., Xu, M., Shen, Z., & Yu, J. C. (2015). A Nanostructured Chromium(III) Oxide/Tungsten(VI) Oxide p–n Junction Photoanode toward Enhanced Efficiency for Water Oxidation. J. Mater. Chem. A, 3(26), 14046–14053. https://doi.org/10.1039/C5TA02528A
  9. Jiang, F. Y., Tang, Z. K., Zhai, J. P., Ye, J. T., & Han, J. R. (2006). Synthesis of AlPO4-5 crystals using TBAOH as template. Microporous and Mesoporous Materials, 92(1–3), 129–133. https://doi.org/10.1016/j.micromeso.2005.12.021
  10. Kalbasi, R. J., & Izadi, E. (2011). Synthesis and characterization of polymer/microporous molecular sieve nanocomposite as a shape-selective basic catalyst. Comptes Rendus Chimie, 14(11), 1002–1013. https://doi.org/10.1016/j.crci.2011.05.001
  11. Kaydouh, M.-N., El Hassan, N., Davidson, A., Casale, S., El Zakhem, H., & Massiani, P. (2015). Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. Comptes Rendus Chimie, 18(3), 293–301. https://doi.org/10.1016/j.crci.2015.01.004
  12. Li, D., Yao, J., & Wang, H. (2012). Hydrothermal synthesis of AlPO4-5: Effect of precursor gel preparation on the morphology of crystals. Progress in Natural Science: Materials International, 22(6), 684–692. https://doi.org/10.1016/j.pnsc.2012.11.003
  13. Liu, Z., Liu, L., Song, H., Wang, C., Xing, W., Komarneni, S., & Yan, Z. (2015). Hierarchical SAPO-11 preparation in the presence of glucose. Materials Letters, 154(66), 116–119. https://doi.org/10.1016/j.matlet.2015.04.067
  14. Mériaudeau, P., Tuan, V. ., Lefebvre, F., Nghiem, V. ., & Naccache, C. (1998). Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion. Microporous and Mesoporous Materials, 22(1–3), 435–449. https://doi.org/10.1016/S1387-1811(98)00095-X
  15. Santa Arango, Alejandra Maria. (2009). Oligomerización De Olefinas Livianas Para La Producción De Diesel Usando Catalizadores Tipo Zeolita. MSc. Thesis, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.
  16. Santa Arango, Alejandra María, Escobar Garcés, C. M., Agudelo Valderrama, J. L., Guzmán Monsalve, A., Palacio Santos, L. A., & Echavarría Isaza, A. (2011). Oligomerization of propene over ZSM-5 modified with Cr and W. Revista Facultad de Ingenieria, (57), 57–65.
  17. Shufang, W., Yanji, W., Yang, G., & Xinqiang, Z. (2010). Preparation of SAPO-5 and Its Catalytic Synthesis of p-Aminophenol. Chinese Journal of Catalysis, 31(6), 637–644. https://doi.org/10.1016/S1872-2067(09)60079-6
  18. Souza de Araujo, A., Carlos Diniz, J., da Silva, A. O. S., & Alves de Melo, R. a. (1997). Hydrothermal synthesis of cerium aluminophosphate. Journal of Alloys and Compounds, 250(1–2), 532–535. https://doi.org/10.1016/S0925-8388(96)02738-7
  19. Van Der Borght, K., Galvita, V. V., & Marin, G. B. (2015). Reprint of "ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 504, 621–630. https://doi.org/10.1016/j.apcata.2015.06.034
  20. Wei, X.-L., Lu, X.-H., Zhang, T.-J., Chu, X., Zhou, D., Nie, R.-F., & Xia, Q.-H. (2015). Synthesis and catalytic application of SAPO-5 by dry-gel conversion for the epoxidation of styrene with air. Microporous and Mesoporous Materials, 214, 80–87. https://doi.org/10.1016/j.micromeso.2015.04.037
  21. Wu, Q., Oduro, I. N., Huang, Y., & Yunming, F. (2015). Synthesis of hierarchical SAPO-11 via seeded crystallization. Microporous and Mesoporous Materials, 218, 24–32.
  22. Young, D., & Young, A. B. (1993). Rapid Analysis of Occluded Pr2NH in the AIPO4-11 and VPI-5 Molecular Sieves by Direct Mass Spectrometry. Materials Chemistry, 3(3), 295–297.
  23. Zhou, D., Luo, X. B., Zhang, H. L., Dong, C., Xia, Q. H., Liu, Z. M., & Deng, F. (2009). Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11. Microporous and Mesoporous Materials, 121(1–3), 194–199. https://doi.org/10.1016/j.micromeso.2009.01.033