Mechanical and mineralogical evaluation of a metakaolin cement using the surface response method
Evaluación mecánica y mineralógica de un cemento de metacaolín utilizando el método de superficie de respuesta.


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
In this work, an alkaline cement based on Colombian metakaolin (MK) is developed. The activators used: 15% by mass of Na2SiO3 and Na(OH) and Ca(OH)2 were varied in different molar concentrations following a statistical experimental design with response surface model. The variable response, mechanical resistance to compression, was evaluated in cylindrical paste specimens at 7 and 14 days of curing at 40 ° C. The X-ray diffraction tests identified the mineralogical and cementing phases present in the pulp product of the alkaline synthesis.The results analyzed through statistical software allowed, through the ANOVA, to identify a high level of significance in the Na(OH) factor as well as the increasing effect in the response variable, while the Ca(OH)2 presented a curvature effect in the explored region. Mechanical strengths in the order of 34 MPa account for the formation of cementing phases as well as the presence of type A zeolites (Na2Al2Si11,85O7,7 5,1(H2O)) in the result DRX.
Article visits 401 | PDF visits 259
Downloads
- Alonso S., & Palomo A. (2000). Alkaline activation of mettakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. MATERIALS LETTERS.
- Bell, F. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 223-237.
- Bernal S.A., Mejía R., Provis J.L., & Rose V. (2010). Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research.
- Caro, F. (3 de 05 de 2017). Estadistica. (C. A. Villamil, Entrevistador)
- Criado, M. S. (2007). Nuevos materiales cementantes basados en la activación alcalina de cenizas volantes. Caracterización de geles N-A-S-H en función del contenido de Sílice soluble. Efecto del Na2SO4. Madrid, España: UNIVERSIDAD AUTONOMA DE MADRID.
- Davidovits, J. (1991). GEOPOLYMERS: INORGANIC POLYMERIC NEW MATERIALS. Geopolymer Instute 1997, 1633-1656.
- De Silva, P., Sagoe-Crenstil, K., & Sirivivathanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 512-518.
- Diamond, S. (1982). ON THE GLASS PRESENT IN LOW-CALCIUM. School of Civil Engineering- Purdue University, West Lafayette, Indiana, 459-464.
- Duxson, P., Fernández-Jiménez, A., Provis, J., Lukey, G., Palomo, A., & van Deventer, J. (2007). Geopolymer technology: the current state of the art. Journal of material science, 2917-2933.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash blinder. A comparative study between sodium and potassium activators. Materiales de Construcción, 51-65.
- Gutiérrez Pulido, H., & de la Vara Salazar, R. (2008). Análisis y diseño de experimentos. México, D.F.: McGraw-Hill Interamericana.
- Hoyos Montilla, A., Arias Jaramillo, Y., & Tobón, J. (2018). Evaluation of cements obtained by alkali-activated coal ash with NaOH cured at low temperatures. Materiales de construcción,, V.68.
- INSUMOS INDUSTRIALES CORONA. (12 de OCTUBRE de 2013). ESPECIFICACIONES DE PRODUCTO. METACAOLIN DE ALTA REACTIVIDAD PUZOLÁNICA. MEDELLIN, ANTIOQUIA, COLOMBIA: .
- Khale, D., & Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: a review. Journal of Materials Science, 729-746.
- Komnitsas Kostas, & Zaharaki Dimitra . (2007). Geopolymerisation: A review and prospects for the minerals industry. Science Direct, 1261-1277.
- Lecomte, I., Liégeois, M., Rulmont, A., & Cloots, R. (2003). Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. Journal of Materials Research , 2571-2579.
- Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research, 1341.
- Liew Yun-Ming, Heah, C.-Y., Mohd, M., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A. Progress in Materials Science, 595-629.
- Nagaraj, H., Rajesh, A., & Sravan, M. (2016). Influence of soil gradation, proportion and combination of admixtures on the properties and durability of CSEBs. Construction and Building materials, 135-144.
- Nagaraj, H., Sravan, M., Arun, T., & Jadadish, K. (2014). Role of lime with cement in long-term strength of compressed stabilized earth blocks. international journal of sustainable built environment, 54-61.
- Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez A. (2014). A revie on alkaline activation: new analytical perspectives. MATERIALES DE CONSTRUCCIÓN.
- Palomo, A., Macias, A., Blanco, M., & Puertas, F. (1992). Physical chemical and mechanical characterization of geopolymers. 9th International congress on the chemestry of cement, (págs. 505-511). New Delhi.
- Penman, A. (1989). Dams, In Civil engineer´s Reference Book. Butterworth - Heinemann: LS Blake.
- Provis, J., Lukey, G., & Deventer, J. (2005). Do geopolymers actually contain nanocrystalline zeolites? Chemical Mater, 3075-3085.
- Provis, J., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 110-125.
- Reig, L., Soriano, L., Borrachero, M., Monzó, J., & Payá, J. (2014). Influence of the activator concentration and calcium hidroxide addition on the properties of alkali-actived porcelain waste. Constrution and building materials, 214-222.
- Rowshanzamir, M., & Askari, A. (2010). An investigation on the strength anisotropy of compacted clays. Applied Clay Science, 520-524.
- Tripura, D., & Konjengbam, D. (2015). Axial load-capacity of rectangular cement stabilized rammed earth. Engineering Structures, 402-412.
- Venkatarama Reddy, B., & Latha, M. (2014). Retrieving clay minerals from stabilised soil compacts. Applied Clay Science, 362-368.
- Villa, C., Pecina, E., Torres, R., & Gómez, L. (2010). Geopolymer synthesis using alkaline activation of natural zeolite. Construction and Building Materials, 2084-2090.
- Xu H, & Van Deventer, J. (2001). Geopolymerisation of aluminosilicate minerals. Melboure, Australia: Department of Chemical Engineering, University of Melbourne.
- Yip C.K., Lukey G.C., & van Deventer J.S.J. (2004). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research.