Skip to main navigation menu Skip to main content Skip to site footer

Effect of grass star incorporation on the composting biowaste process and on the quality of the product

Efecto de la incorporación de pasto estrella sobre el mejoramiento del proceso y la calidad del producto del compostaje de biorresiduos



Open | Download


Section
Articles

How to Cite
Effect of grass star incorporation on the composting biowaste process and on the quality of the product. (2020). Revista EIA, 17(33), 33011 pp. 1-11. https://doi.org/10.24050/reia.v17i33.1352

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Patricia Torres Lozada,

Proesora Titular Facultad de Ingenieria Universidad del Valle

Inv. Senior Colciencias

Directora Grupo de Investigación Estudio y Control de la Contaminación Ambiental - ECCA


The predominantly organic composition of biowaste (BW) present in municipal solid wastes, enhances its use through composting; however, these present physicochemical deficiencies that can be mitigated with the incorporation of conditioning materials as the support materials (SM). On this study, it was evaluated the effect of the incorporation of star grass (SG) on BW composting in four BW:SG ratios (A0-100: 00, A1-90: 10, A2-80: 20, A3-70: 30), showing favorable effects with respect to A0 (100% BOM). A2 maintained the highest temperatures; A2 and A3 recorded the greatest reduction of volatile solids (VS) and final concentration of total nitrogen (TN). The final products of A2 and A3 also presented better quality in terms of cation exchange capacity, nutrient content (total phosphorus, potassium and nitrogen), bulk density, moisture retention capacity and organic matter content; being A2 product, the material with highest agronomic value, in accordance with Colombian Technical Standard. Proportions less or equal to the one evaluated in A1, do not have a significant effect on the process and quality of the final product and, proportions greater than A3 could favor the loss of nitrogen due to the increase in porosity, thus decreasing the agricultural value of the product.


Article visits 618 | PDF visits 387


Downloads

Download data is not yet available.
  1. Acosta-Durán, C. M.; Solís-Pérez, O.;Villegas-Torres, O. G.; Cardoso-Vigueros, L. (2013). Precomposteo de residuos orgánicos y su efecto En la dinámica poblacional de einsenia foetida. Agronomía Costarricense, 37 (1), pp. 127-139.
  2. Ali, U.; Khalid, A.; Mahmood, T; Aziz, I. (2013). Accelerated Biodegradation of Solid Organic Waste through Biostimulation. Proceedings of the Pakistan Academy of Sciences, 50 (1), pp. 37-46.
  3. Barrena, R.; Vázquez, F.; Sánchez, A. (2006). The use of respiration indices in the composting process: a review. Waste Management & Research, 24 (1), pp. 24-37. https://doi.org/10.1177 / 0734242X06062385
  4. Bernal, M. P.; Alburquerque; J. A.; Moral, R. (2009). Composting of animal manures
  5. and chemical criteria for compost maturity assessment. A review. Bioresource
  6. technology, 100 (22), pp. 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027
  7. Bohórquez, A.; Puentes, Y.; Menjivar, J. C. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Corpoica Ciencia y Tecnología Agropecuaria, 15 (1), pp 73-81
  8. Cáceres, R., Malińska, K. y Marfà, O. (2018). Nitrification within composting: A review.
  9. Waste Management, 72, pp. 119-137. https://doi.org/10.1016/j.wasman.2017.10.049
  10. Chanpla, M.; Kullavanijaya, P.; Janejadkarn, A.; Chavalparit, O. (2017) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE Journal of Civil Engineering, pp. 1–6. https://doi.org/10.1007/s12205-017-1164-y
  11. Campuzano, R.; González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, pp. 54: 3-12. https://doi.org/10.1016/j.wasman.2016.05.016
  12. Cesaro, A.; Belgiorno, V.; Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling ,94(0), pp. 72-79. https://doi.org/10.1016/j.resconrec.2014.11.003
  13. De Guardia, A.; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J. C.; Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30(3), pp. 402-414. https://doi.org/10.1016/j.wasman.2009.10.019
  14. Faverial, J.; Boval, M.; Sierra, J.; Sauvant, D. (2016). End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. Journal of Environmental Management, 183, pp. 909-916. https://doi.org/10.1016 / j.jenvman.2016.09.057
  15. Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T. F. (2016). Physico-chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Management, 49, pp. 3-14. https://doi.org/10.1016 / j.wasman.2016.01.008
  16. Haynes, R.J.; Belyaeva, O. N.; Zhou, Y. F. (2015). Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Management, 35, pp. 48-54. https://doi.org/10.1016/j.wasman.2014.10.002
  17. Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. (2018). Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste and Biomass Valorization, 9(12), pp. 2257-2274. https://doi.org/10.1007 / s12649-018-0197-x
  18. ICONTEC (2011). Norma Técnica Colombiana 5167. Productos para la Industria Agrícola, Productos Orgánicos Usados como Abonos o Fertilizantes y Enmiendas de Suelo.
  19. Jiang T., Schuchardt F., Li G., Guo R. y Zhao Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences, 23 (10), 1754-1760. https://doi.org/10.1016/S1001-0742(10)60591-8
  20. J Jiang-Ming, Z. (2017). Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67 (3), 313-321. https://doi.org/10.1080 / 10962247.2016.1232666
  21. Kalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M. M. y Yamamoto, S. (2012). An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresource Technology, 126, 375-382. https://doi.org/10.1016/j.biortech.2012.04.030
  22. Kumar, M., Ou, Y. y Lin, J. (2010). Co-composting of green and food waste at low C/N ratio. Waste Management, 30(4), 602-609. https://doi.org/10.1016/j.wasman.2009.11.023
  23. Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T. y Kyriacou, A. (2006). Quality assessment of composts in the Greek market: The need for standards and quality assurance. Journal of Environmental Management, 80 (1), 58-65. https://doi.org/10.1016 / j.jenvman.2005.08.011
  24. Li, Z.; Lu, H.; Ren, L.; He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), pp. 1247-1257. https://doi.org/10.1016/j.chemosphere.2013.06.064
  25. Martínez-Salgado, M.M.; Ortega-Blu, R.; Janssens, M.; Fincheira, P. (2019). Grape pomace compost as a source of organic matter: Evolution of quality parameters to evaluate maturity and stability. Journal of Cleaner Production, 216, pp. 56-63. https://doi.org/10.1016/j.jclepro.2019.01.156
  26. Navia-Cuetia, C. A.; Zemanate-Cordoba, Y.; Morales-Velasco, S.; Alonso Prado, F.; Albán López, N. (2013). Evaluation of different formulations From waste composting crop tomato (solanum lycopersicum). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, pp. 165 - 173.
  27. NCh -Norma chilena de compost 2880- 2004. (2015). Compost - Clasificación y requisitos, 23. Santiago de Chile, 27.
  28. Nigussie, A., Bruun, S., Kuyper, T. W. y De Neergaard, A. (2017). Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability. Chemosphere, 166, 352-362. https://doi.org/10.1016/j.chemosphere.2016.09.123
  29. Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N. y Ezeogu, L. I. (2017). Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190, 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051
  30. Oudart, D., Robin, P., Paillat, J.-M. y Paul, E. J. W. M. 2015. Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. 46, 588-598. https://doi.org/10.1016/j.wasman.2015.07.044
  31. Oviedo, R.; Marmolejo, L.; Torres, P. (2017). Advances in research on biowaste composting in small municipalities of developing countries. Lessons from Colombia. Revista Ingenieria Investigacion y Tecnologia, 18(01), pp. 31-42.
  32. Parkinson, R., Gibbs, P., Burchett, S. y Misselbrook, T. (2004). Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresource Technology, 91 (2), 171-178. https://doi.org/10.1016/S0960-8524(03)00174-3
  33. Ponsá, S., Gea, T. y Sánchez, A. (2010). Different Indices to Express Biodegradability in Organic Solid Wastes. Waste Managament, 39 (2), 706-712. https://doi.org/10.2134 / jeq2009.0294
  34. Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D. y Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77, 486-499. https://doi.org/10.1016/j.wasman.2018.04.037
  35. Richardson, A. E. y Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 156 (3), 989-996. https://doi.org/10.1104 / pp.111.175448
  36. Soobhany, N. (2018). Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. Journal of Environmental Chemical Engineering, 6 (2), 1979-1988. https://doi.org/10.1016/j.jece.2018.02.049
  37. Soto-Paz, J., Oviedo-Ocaña, R., Marmolejo-Rebellón, L. F. y Manyoma-Velásquez, P. C. (2017). Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo. DYNA, 84(203), pp. 334-342. https://doi.org/10.15446/dyna.v84n203.61549
  38. Sundberg, C., Yu, D., Franke-Whittle, I., Kauppi, S., Smårs, S., Insam, H., Romantschuk, M. y Jönsson, H. (2013). Effects of pH and microbial composition on odour in food waste composting. Waste Management, 33 (1), 204-211. https://doi.org/10.1016/j.wasman.2012.09.017
  39. Thi, N., Kumar, G. y Lin, C.Y. (2015). An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental Management, 157, 220-229. https://doi.org/10.1016/j.jenvman.2015.04.022
  40. Torres, P.; Imery, R.; Perez, A.; Uribe, I. E.; Escobar Rivera, J. C. (2007). Compostaje de biosólidos de Plantas de Tratamiento de Aguas Residuales. Engenharia Agricola, 27 (1), pp.267 - 275. https://doi.org/10.1590 / S0100-69162007000100021
  41. Vandecasteele, B., Boogaerts, C. y Vandaele, E. (2016). Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management, 58, 169-180. https://doi.org/10.1016/j.wasman.2016.09.012
  42. Van Soest, PJ.; Wine, R.; (1967). Uso de detergentes en el análisis de alimentos fibrosos. IV. Determinación de permanganato. Assoc. Oficial Anal. Chem 50(1): 6.
  43. Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Rashid, M. I. y Ismail, I. M. I. (2018). Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production, 176, 426-438. https://doi.org/10.1016/j.jclepro.2017.12.165
  44. Zhang, L. y Sun, X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, 48, 115-126. https://doi.org/10.1016/j.wasman.2015.11.032
  45. Zhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J. y Wei, Z. (2018). Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting. Bioresource Technology, 262, 221-228. https://doi.org/10.1016 / j.biortech.2018.04.088.