Skip to main navigation menu Skip to main content Skip to site footer

Structural and microstructural properties of systems based on Bi0.5Na0.5TiO3

Propiedades Estructurales y Microestructurales de Sistemas Basados en Bi0.5Na0.5TiO3



Open | Download


Section
Articles

How to Cite
Structural and microstructural properties of systems based on Bi0.5Na0.5TiO3. (2020). Revista EIA, 17(33), 33012 pp. 1-8. https://doi.org/10.24050/reia.v17i33.1356

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Marcela Revelo Castro
Sonia Gaona Jurado

Marcela Revelo Castro,

Departamento de Química

Sonia Gaona Jurado,

Profesora Titular, Departamento de Física

Claudia Fernanda Villaquiran Raigoza,

Profesora Titular, Departamento de Física

Perovskites based on bismuth sodium titanates, Bi0.5Na0.5TiO3 (BNT), are incorporated into lead-free piezoelectric materials. Although BNT was discovered five decades ago, many aspects such as the structural complexity and the modifications produced when it is combined with other perovskites are not clearly understood. We studied the structural and microstructural properties of BNT upon addition of BaTiO3 (BT) and SrTiO3 (ST) during sol-gel synthesis. We characterized the ceramic powders by infrared and Raman spectroscopy, X-ray diffraction and scanning electronic microscopy. The addition of BT/ST modified the bonds, generating coexistence and phase transition and confirmed the existence of a morphotropic phase boundary. 


Article visits 444 | PDF visits 267


Downloads

Download data is not yet available.
  1. G. A. Smolenskii, A. I. Isupov, A: I. Agranovskaya, N. N. Krainik, New ferroelectrics of complex composition, Soviet Physics–Solid State, 2 (1961) 2651-2654.
  2. B. Parija, T. Badapanda, S. Panigrahi, T. P. Sinha, Ferroelectric and piezoelectric propieties of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, J. Mater. Sci. Mater. Electron. 24 (2013) 402-410. https://doi.org/10.1007/s10854-012-0764-z
  3. M. C. Perez, Láminas delgadas de (Bi0.5Na0.5)1-xBaxTiO3 en torno a la frontera de fase morfotrópica preparadas por métodos de depósito químico y fotoquímico de disoluciones, Tesis doctoral, Universidad de Navarra, España, 2016.
  4. R. Machado, B. Valdeci, D. A. Ochoa, E. Cerdeiras, L. Mestres, J. E. García, Elastic, dielectric and electromechanical properties of (Bi0.5Na0.5)TiO3-BaTiO3 piezoceramics at the morphotropic phase boundary region, J. Alloys Compd. 690 (2017) 568-574.
  5. Lee, J.-K.; Hong, K. S.; Kim, C. K.; Park, S.-E. (2002): Phase transitions and dielectric properties in A-site ion substituted (Na1/2Bi1/2)TiO3 ceramics (A=Pb and Sr), Journal of Applied Physics, 91(7): 4538-4542. https://doi.org/10.1016/j.jallcom.2016.08.116.
  6. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperatura of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics, Appl. Phys. Lett. 92 (2008) 262904. https://doi.org/10.1063/1.2955533.
  7. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective, J. Electroceramics, 29 (2012) 71-93. https://doi.org/10.1007/s10832-012-9742-3.
  8. C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic, Inc., New York, 1990.
  9. L. A. Palacios-Santos, Métodos de síntesis de nuevos materiales basados en metales de transición, Revista Facultad de Ingeniería, 32 (2004) 51-61.
  10. M.Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr. 43 (2010) 1126-1128. https://doi.org/10.1107/S0021889810030499.
  11. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M. A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics, J. Alloys Compd. 618 (2015) 643-648. https://doi.org/10.1016/j.jallcom.2014.08.161.
  12. I. G. Siny, E. Husson, J. M. Beny, S. G. Lushnikov, E. A. Rogacheva, P. P. Syrnikov, Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3, Ferroelectrics, 248 (2000) 57-78. https://doi.org/10.1080/00150190008223669.
  13. S. Trujillo, J. Kreisel, Q. Jiang, J. H. Smith, P. A. Thomas, P. Bouvier, F. Weiss, The high-pressure behavior of Ba-doped Na1/2Bi1/2TiO3 investigated by Raman spectroscopy, J. Phys. Condens. Matter. 17 (2005) 6587-6597. https://doi.org/10.1088/0953-8984/17/41/027.
  14. M. Zannen, A. Lahmar, M. Dietze, H. Khemakhem, A. Kabadou, M. Es-Souni, Structural, optical, and electrical properties of Nd-doped Na0.5Bi0.5TiO3, Mater. Chem. Phys. 134 (2012) 829–833. https://doi.org/10.1016/j.matchemphys.2012.03.076.
  15. R. Selvamani, G. Singh, V. Sathe, V. S. Tiwari, P. K. Gupta, Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1−x)(BiCrO3)x ceramic, J. Phys.: Condens. Matter. 23 (2011) 55901. https://doi.org/10.1088/0953-8984/23/5/055901.
  16. J. Suchanicz, I. Jankowska-Sumara, T. V. Kruzina, Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics, J. Electroceram. 27 (2011) 45-50. https://doi.org/10.1007/s10832-011-9648-5.
  17. E. Buixaderas, S. Kamba, J. Petzelt, J. Drahokoupil, F. Laufek, M. Kosec, Dielectric anisotropy in relaxor ferroelectric Pb0.775La0.15(Zr0.4Ti0.6)O3 ceramics, Appl. Phys. Lett. 91 (2007) 112909. https://doi.org/10.1063/1.2783962.
  18. D. Rout, V. Subramanian, K. Hariharan, V. R. K. Murthy, V.
  19. Sivasubramanian, Raman spectroscopic study of (Pb1-xBax)(Yb1/2Ta1/2)O3 ceramics, J. Appl. Phys. 98 (2005)103503-103503-6. https://doi.org/10.1063/1.2131188.
  20. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, V. Abello, G. Lucazeau, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5Bi0.5TiO3 (0 x 1) solid solution, J. Phys.: Condens. Matter. 12 (2000) 3267-3280. https://doi.org/10.1088/0953-8984/12/14/305.
  21. J. Shi, H. Fan, X. Liu, A. Bell, Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 Solid Solutions, J. Am. Ceram. Soc. 97 (2014) 848-853. https://doi.org/10.1111/jace.12712.
  22. S. Kim, H. Choi, S. Han, J. S. Park, M. H. Lee, T. K. Song, M.-H. Kim, D. Do, W.-J. Kim, A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics, J. Am. Ceram. Soc. 37(4) (2017) 1379–1386. https://doi.org/10.1016/j.jeurceramsoc.2016.11.023
  23. B. Parija, S. K. Rout, L. S. Cavalcante, A. Z. Simões, S.·Panigrahi, E. Longo, N. C. Batista, Structure, microstructure and dielectric properties of 100-x(Bi0.5Na0.5)TiO3 −x[SrTiO3] composites ceramics, Appl. Phys. A. 109 (2012) 715-723. https://doi.org/10.1007/s00339-012-7105-1.
  24. G. O. Jones, P. A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3, Acta Cryst. B. 58 (2002) 168-178. https://doi.org/10.1107/S0108768101020845.
  25. A. S. Bhalla, R. Guo, R. Roy, The perovskite structure-a review of its role in ceramic science and technology, Mater. Res. Innov. 4 (2000) 3-26. https://doi.org/10.1007/s100190000062.