Supervised Machine Learning Proposal For The Estimation Of Human Biological Age Based On Forensic Dentistry
Propuesta supervisada de aprendizaje de máquina para la estimación de la edad biológica humana basada en odontología forense


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Colombian Criminal Procedure Code supports the appropriate use of dental pieces for the identification of individuals, so this technique is a tool of great importance for the administration of justice institutions. The classic methods of human identification, especially those used to estimate the biological age of death in adults such as Lamendin, have been developed using information from populations with morphological, metric and cultural characteristics different from those in Colombia. Consequently, Colombian forensic specialists have obtained high error rates in age estimation results. In this research, the biological age was initially calculated using the classic method of Lamendin. Subsequently, with the direct and indirect measures, also used in the Lamendin method, the training of machine learning techniques was carried out knowing the chronological age of the individuals in the sample. The results of the supervised machine learning regression techniques were compared: Vector Support Machines (SVM), Gaussian Regression Processes (GPR) and Ensembles of Trees (EoT), among others. A sample of 48 single-root dental pieces belonging to 45 individuals of Colombian nationality was studied, with chronological ages of death known within the age range from 19 to 81 years.
Additionally, the digital caliper gauge and the comparison microscope were used to measure the heights of the morphological characteristics in the dental pieces. The best accuracy in the estimation of the biological age was achieved with the GPR regression that showed a root mean square error (RMSE) of 3.37 years in the identification, which was compared with the accuracy reached by the Lamendin method with a RMSE of 15.52 years. This research shows that the GPR machine learning regression, especially for the Colombian case, is a valid tool for estimating the biological age of death with much lower errors than those achieved by traditional European techniques.
Article visits 599 | PDF visits 602
Downloads
- Alvarado Garcia, A. M. & Salazar Maya, A. M., 2014. Análisis del concepto de envejecimiento. Gerokomos., 25(2), pp. 57-62.
- Baviera, T., 2017. Técnicas para el análisis del sentimiento en Twitter: Aprendizaje Automático Supervisado y SentiStrength. Revista Dígitos, 1(3), pp. 33-50.
- Bedoya, O. & Bustamante, S., 2011. CNN-PROMOTER, NEW CONSENSUS PROMOTER PREDICTION PROGRAM BASED ON NEURAL NETWORKS. Revista EIA, 8(15), pp. 153-164
- Drucker, H. y otros, 1997. Support vector machine. Advances in neural information processing systems, Enero.pp. 155-161.
- Foti, B. y otros, 2001. Limits of the Lamendin method in age determination. Forensic Science International, pp. 101-106.
- Garcia Cambronero, C. & Gomez Moreno, I., 2006. Algoritmos de aprendizaje: KNN & KMEANS. [Inteligencia en Redes de Telecomuncicación, Universidad Carlos III de Madrid.
- Guyon, I. & Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. Journal of Machine Learning, pp. 1157-1182.
- JCGM 100, 2008. Guide to the expression of uncertainty in measurement. En: J. C. f. G. i. Metrology, ed. Evaluation of measurement data. s.l.:s.n., pp. 36-37.
- Krenzer, U., 2005. Odontología forense. En: Tomo VI Antropología Dental. Guatemala: CAFCA, pp. 52-58.
- Krenzer, U., 2006. Cambio en las dientes. En: Tomo III Estimación de la edad Osteológica en adultos. Guatemala: CAFCA, pp. 14-16.
- Lamendin, H. y otros, 1992. A simple Technique for age estimation in adult corpses: The two criteria dental method. Journal of forensic sciences, pp. 1373-1379.
- Martinez Rodriguez, E., 2005. Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario jurídico y económico escurialense, Issue 38, pp. 315-331.
- Morales, D., Betancourt, C. & Mesa, . L., 2010. Cálculo de la incertidumbre de medida al equipo de movimiento rectilíneo uniforme del grupo de investigación dicoped. Scientia et Technica, Issue 46, pp. 206-210.
- Pelaez Chávez, N., 2012. Aprendizaje no supervisado y el algoritmo WAKE-SLEEP en redes neuronales. s.l.:s.n.
- Suárez Ponce , D. G., 2014. Reconstrucción osteobiográfica. Odontología Sanmarquina, pp. 44-46.
- Pretelt de la Vega, S., 2004. Código de Procedimiento Penal. [En línea] Available at: https://www.oas.org/juridico/mla/sp/col/sp_col-int-text-cpp-2005.html [Último acceso: Noviembre 2017].
- Prince, D. A. & Ubelaker, D. H., 2002. Application of Lamendin's adult dental aging Technique to a diverse skeletal sample. Journal Forensic Science, pp. 107-116.
- Tobón, I. & Cortés, J., 2018. Identificación de instrumentos musicales de cuerdas pulsadas de la región andina colombiana en solo, mediante técnicas de aprendizaje de máquina. Revista EIA, 15(30), pp. 177-193.
- Vapnik, V., Golowich, S. & Smola, A., 1997. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Advances in neural information processing systems, pp. 281-287.
- Vilcapoma Guerra, H. J., 2012. Método dental modificado para la estimación de la edad en individuos adultos. Odontología Sanmarquina, pp. 27-30.
- Willmott, C. & Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, Volumen 30, pp. 79-82.
- Witten, I. H., Frank, E. & Hall, M. A., 2011. Cross Validation. En: Data Mining Practical Machine Learning. USA: Morgan Kaufmann, pp. 152-154.
- Witten, I. H., Frank, E. & Hall, M. A., 2011. Ensemble learning. En: Data Mining Practical Machine Learning. s.l.:Morgan Kaufmann, pp. 352-362.