Skip to main navigation menu Skip to main content Skip to site footer

Simulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulator

Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®


Proceso de producción de L-Fe por la ruta fermentativa
Open | Download


Section
Articles

How to Cite
Simulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulator. (2021). Revista EIA, 18(35), 35017 pp. 1-15. https://doi.org/10.24050/reia.v18i35.1417

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Elizabeth Ranero-González
Eddy J. Pérez-Sánchez
Rutdali Maria Segura-Silva

Amaury Perez Sanchez,

Departamento de Ingenieria Quimica, Profesor Instructor, Especialista Principal

L-phenylalanine (L-Phe) is one of the eight essential amino acids for the human body. In this work, the simulation of the L-Phe fermentative production process was carried out using the SuperPro Designer® simulator, in order to know its most important profitability indicators under the current economic conditions in Cuba. A sensitivity study was also accomplished with the objective of knowing from which value of the parameter unit selling price of an L-Phe bottle a positive value begins to be obtained of the indicator Net Present Value (NPV). A gross margin of 70.15%, a unit cost of production of USD $ 66.75 per bottle and a return on investment of 38.92% were obtained. From a value of the unit sale price of the L-Phe bottle of USD $ 115.3 the production plant starts to be profitable. The L-Phe production process can be considered profitable and feasible from the techno-economical point of view, based on the results obtained of NPV (USD $ 14,040,000), Internal Rate of Return (49.14%) and Payback Time (2.57 years).     


Article visits 1144 | PDF visits 894


Downloads

Download data is not yet available.
  1. Aguiar, A. C. d.; Osorio-Tobón, J. F.; Silva, L. P. S.; Barbero, G. F.; Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://dx.doi.org/10.1016/j.supflu. 2017.09.031.
  2. Auli, N. A.; Sakinah, M.; Bakri, A. M. M. A.; Kamarudin, H.; Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.
  3. Baca, G. (2010). Evaluación de proyectos, 6ta ed., México D.F., McGraw-Hill/Interamericana Editores, S.A. de C.V, pp. 56-94.
  4. Báez-Viveros, J. L.; Flores, N., Juárez, K.; Castillo-España, P.; Bolivar, F.; Gosset, G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microbial Cell Factories, 6(1), pp. 1-20. https://dx.doi.org/10.1186/1475-2859-6-30.
  5. BIOTOL. (1997). Biotechnological Innovations in Chemical Synthesis. Oxford, Butterworth-Heinemann, pp. 253-262.
  6. Bongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metabolic Engineering, 3(4), pp. 289-300. https://dx.doi.org/10.1006/mben.2001.0196.
  7. Doroshenko, V. G.; Livshits, V. A.; Airich, L. G.; Shmagina, I. S.; Savrasova, E. A.; Ovsienko, M. V.; Mashko, S. V. (2015). Metabolic Engineering of Escherichia coli for the Production of Phenylalanine and Related Compounds. Applied Biochemistry and Microbiology, 51(7), pp. 733-750. https://dx.doi.org/10.1134/s0003683815070017.
  8. FINAR. (2019). Price List 2019-20, Gujarat, Finar Foundation,
  9. García, J. M. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), pp. 1-9.
  10. Gerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. (2002). Process Control for Enhanced L-Phenylalanine Production Using Different Recombinant Escherichia coli Strains. Biotechnology and Bioengineering, 80(7), pp. 746-754. https://dx.doi.org/10.1002/bit.10428.
  11. Gerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng., 25, pp. 43–52. https://dx.doi.org/0.1007/s00449-002-0280-2.
  12. Heinzle, E., Biwer, A. P., Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. West Sussex, John Wiley & Sons, pp. 62-78.
  13. Intelligen. (2018). SuperPro Designer® (Version 10.0). Scotch Plains, Intelligen, Inc.
  14. Ito, H.; Sato, K.; Matsui, K.; Sano, K.; Enei, H.; Hirose, Y. (1990). Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl. Microbiol. Biotechnol., 33, pp. 190-195. https://dx.doi.org/10.1007/BF00176523.
  15. Jenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(2), pp. 56.
  16. Klausner, A. (1985). Building for Success in Phenylalanine. Biotechnology, 3(4), pp. 301-307.
  17. Lee, C. S.; Chong, M. F.; Binner, E.; Gomes, R.; Robinson, J. (2018). Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design, 132, pp. 358–369. https://dx.doi.org/10.1016/j.cherd.2018.01.050.
  18. Liu, C. H.; Liao, C. C. (1994). Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum. Biotechnol. Lett., 16, pp. 801-806.
  19. Liu, Y.; Xu, Y.; Ding, D.; Wen, J.; Zhu, B.; Zhang, D. (2018). Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 18(5), pp. 1-12. https://dx.doi.org/10.1186/s12896-018-0418-1.
  20. Mani, S.; Sundaram, J.; Das, K. C. (2016). Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass and Bioenergy, 93, pp. 158-167. https://dx.doi.org/10.1016/j.biombioe.2016.07.018.
  21. Matche. (2020). Chemical Equipment Cost. Disponible en www.matche.com. [Consultado 12 de abril 2020].
  22. McEvoy, J. J.; Joyce, A. (1974). Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis. Mol. Cell. Biochem., 4(3), pp. 191-195. https://dx.doi.org/10.1007/bf01731480.
  23. Meza, J. d. J. (2013). Evaluación financiera de proyectos, 3ra ed., Bogotá, D.C.: Ecoe Ediciones, pp. 133-199.
  24. Miranda, R. d. C.; Mendes, M. F. (2018). Simulation of the Extractive Distillation of Ethanol-Water System: Evaluation of the Influence of Different Solvents. New Materials, Compounds and Applications, 2(2), pp. 152-167.
  25. Molychem. (2019). Price List 2019-2021. Mumbai, Molychem.
  26. Oxford. (2019). Price List 2020-2021 Maharashtra, Oxford Lab Fine Chem LLP.
  27. Peters, M. S., Timmerhaus, K. D., West, R. E. (2003). Plant Design and Economics for Chemical Engineers, 5th ed., New York: McGraw-Hill, pp. 226-275.
  28. Rüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G. A.; Raeven, L.; Takors, R. (2004). Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 26, pp. 239–248. https://dx.doi.org/10.1007/ s00449-004-0354-4.
  29. Sayar, N. A.; Pinar, O.; Kazan, D.; Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909–923. https://dx.doi.org/10.1007/s12649-017-0103-y.
  30. Sigma-Aldrich. (2020). L-Phenylalanine PharmaGrade. Disponible en: https://www.sigmaaldrich.com/catalog/product/sigma/p8740?lang=en&region=CU. [Consultado 27 de abril 2020].
  31. Sinnott, R., Towler, G. (2020). Chemical Engineering Design, 6th ed., Oxford, Butterworth-Heinemann, pp. 275-361.
  32. Sprenger, G. A. (2007). From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), pp. 739–749. https://dx.doi.org/10.1007/s00253-007-0931-y.
  33. Sun, Z.; Gao, X.; Zhang, Y.; Gao, C. (2016). Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalination and Water Treatment, 57(47), pp. 1-7. https://dx.doi.org/10.1080/19443994.2015. 1137082.
  34. Towler, G., Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, 2nd ed., Oxford, Butterworth-Heinemann, pp. 389-425.
  35. Vučurović, D. G.; Dodić, S. N.; Popov, S. D.; Dodić, J. M.; Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367–372. https://dx.doi.org/10.1016/j.biortech.2011.10.085.
  36. Wu, J.; Liu, Y.; Zhao, S.; Sun, J.; Jin, Z.; Zhang, D. (2019). Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. J. Microbiol. Biotechnol., 29(6), pp. 923–932. https://dx.doi.org/10.4014/ jmb.1901.01058.
  37. WVU. (2020) Batch Production of Aminoacids. Disponible en: https://cbe.statler.wvu.edu/files/d/450550ca-9cab-4688-a9b8-f73bc1c72707/ batch-production_of_ amino_acids.pdf. [Consultado 5 de febrero de 2020].
  38. Yuan, P.; Cao, W.; Wang, Z.; Chen, K.; Li, Y.; Ouyang, P. (2015). Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. Journal of Bioscience and Bioengineering, 120(1), pp. 36-40. https://dx.doi.org /10.1016/j.jbiosc.2014.12.002