Induced Bioprecipitation with Sugarcane Cachaza as A Potentiating Mechanism for The Structural Improvement of Compressed Earth Blocks
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
The use of the Colombian seismic design and construction code requires the selection of an energy dissipation capacity (EDC) for the building that depends on the structural type and the seismic hazard at the site. This work investigates the effects on the materials quantities and the seismic behavior of reinforced concrete buildings due to the selection of an EDC superior to the minimum required for low and intermediate seismic regions. Twenty regular buildings with variations in bay lengths and height were designed according to the parameters and requirements for each EDC. Pushover analyses were performed to assess the potential seismic damage in a subset of those buildings. The results showed that the lowest amount of reinforcement in both seismic regions is obtained by selecting a moderate CDE, and that higher levels of seismic damage could occur when a CDE superior to the minimum is selected.
Article visits 572 | PDF visits 399
Downloads
- APHA, AWWA, WPCF. (2017). Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC.
- Lee, Y. (2003). Calcite Production by Bacillus amyloliquefaciens CMB01. Journal of Microbiology, 41 (4), pp. 345-348.
- Valencia, G.Y., Camapum, J., Lara, L. (2014). Carbonatogénesis induced in a profile of tropical soil. Revista Facultad de Ingeniería Universidad de Antioquia, 72, pp. 229-240
- Stocks, S., Galina, J., Bang, G. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-1571.
- Montoya, C., Marquez, M., Lopez, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7 (2), pp. 19-25.
- Garcia, M., Marquez, M.m Ximena, C. (2016). Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiological Research, 182, pp. 21-30
- Valencia, Y. G. (2009). Influência da biomineralização nas propriedades físico - mecânicas de um perfil de solo tropical afetado por processos erosivos. Tese de Doutorado. Universidade de Brasília. Faculdade de Tecnologia, Departamento de engenharia civil e ambiental, Brasília, DF, p. 183.
- Salamanca, C.A. (2018). Efecto de las fuentes orgánicas obtenidas de los subproductos agroindustriales de la caña de azúcar (saccharum officinarum l) y el plátano (musa spp.) sobre la actividad microbiana y enzimática en el suelo. Tesis Doctoral. Universidad Nacional de Colombia Sede Palmira.
- Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 90, pp. 58-64.
- Cezario, N., Pinto, L., Goncalves, A., Nakazato, G., Katsuko, R., Martins, B. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis. International Biodeterioration & Biodegradation, 123, pp. 200-205.
- Van der Star, W., van Wijngaarden, W., Paassen, L., van Zwieten, G. (2011). Stabilization of Gravel Deposits using Microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011.
- van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., van Loosdrechr, M. (2010). Quantifying Bio-Mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment. Journal of geotechnical and geoenvironmental engineering, 136 (12), pp. 1721-1728.
- Canakci, H., Sidik, W., Kilic, I.H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55 (5), pp. 1211-122.
- Capote, J. (2019). La mecánica de suelos y las cimentaciones en las construcciones industriales. La mecánica de suelos y las cimentaciones. Universidad de Cantabria.
- Hernandez, A., Botero, L., Arango, D. (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y ciencia, 11 (21), pp. 197-220.
- Arteaga, K., Medina, O., Gutierrez, J. (2012). Bloque de tierra comprimida como material constructivo. Revista Facultad de Ingeniería, 20 (31), pp. 55-68.
- Galíndez, F. (2007). Bloques de tierra comprimida (BTC) sin adición de cemento. Seguridad y medio ambiente, 115, pp. 63-73
- Rocha, M., Sandoval, F. (2015). Técnicas de construcción con tierra: Introducción. 1ra edición. Lisboba: Argumenum.
- Ohba, M., Aizawa, K. (1986). Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology, 47 (3), pp. 277-282
- Koneman, E., Allen, W., Koneman, S. (2008). Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana, pp. 31-39.
- Larrea, I., Falconí, C., Arcos, A. (2015). Aislamiento y caracterización de cepas de Bacillus spp. con actividad contra Tetranychus urticae Koch en cultivos comerciales de rosas. Revista Colombiana de Biotecnología, 17 (2), pp. 149-155.
- Salazar, M., Sanchez, M., Aucatoma, B. (2009). Uso de cachaza descompuesta y porcentaje de sustitución de fertilización química en un lote del ingenio Valdez. Centro de investigación de la caña de azucar del Ecuador.
- Sabadí, R. (2007). Análisis de procesos en la industria azucarera: Fermentación y destilación., Taller Combustibles, Energía. Medio Ambiente y Programas para Análisis de Procesos., Red Temática IVH: Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Managua, Nicaragua, pp. 2-4
- Bohórquez, A., Puentes, Y., Menjivar, J. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15 (1), pp. 73-81.
- Prescott, H. (1999). Microbiología. Mc Graw-Hill Interamericana de España. 4a ed.
- Tortosa, G. (2012). Los microorganismos del suelo y la relación C/N. Blog Compostando ciencia. Recuperado el 3 de febrero de 2020 de Blog Compostando ciencia: http://www.compostandociencia.com/2012/05/los-microorganismos-del-suelo-y-la-html/
- Hammes, F., Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate. Reviews in environmental science and biotechnology, 1 (1), pp. 3-7.