Skip to main navigation menu Skip to main content Skip to site footer

Time series forecasting for Colombian mining and quarrying electricity demand

Modelos de series temporales para pronóstico de la demanda eléctrica del sector de explotación de minas y canteras en Colombia


Modelos de series temporales
Open | Download


Section
Articles

How to Cite
Time series forecasting for Colombian mining and quarrying electricity demand. (2021). Revista EIA, 18(35), 35007 pp. 1-23. https://doi.org/10.24050/reia.v18i35.1458

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Maria D. Mariño
Adriana Arango
Laura Lotero
Maritza Jimenez

Demand forecasting is of utmost importance for strategic decision making of a nation. Literature offers multiple approaches to the development of forecast models focused in aggregate demand, also, little attention has been paid to non-residential sector demand forecasts. In this paper, using Time Series Analysis approach, three different models are fitted, tested and compared to forecast electricity demand in mining and quarrying sector, one of the most representative non-residential sector for colombian electricity demand. Fitted models include an additive model, a SARIMA and a Holt Winters model. Results indicate that better accuracy is provided the by Holt Winters model.


Article visits 1012 | PDF visits 776


Downloads

Download data is not yet available.
  1. Azadeh, A., Ghaderi, S. F. and Sohrabkhani, S. (2008) ‘A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran’, Energy Policy, 36(7), pp. 2637–2644. https://doi.org/10.1016/j.enpol.2008.02.035.
  2. Barreto, C. and Campo, J. (2012) ‘Relación a largo plazo entre consumo de energía y PIB en América Latina : Una evaluación empírica con datos panel using panel data’, Ecos de Economia, (35), pp. 73–89.
  3. Box, G. E. P. and Jenkins, G. M. (1976) Time series analysis: forecasting and control. Revised Ed. San Francisco : Holden-Day.
  4. Deb, C. et al. (2017) ‘A review on time series forecasting techniques for building energy consumption’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 74(February), pp. 902–924. https://doi.org/10.1016/j.rser.2017.02.085.
  5. EEA (2017) Final energy consumption of electricity by sector, Final energy consumption by sector and fuel. Available at: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-9/assessment-1.
  6. Franco, C. J., Velásquez, J. D. and Olaya, I. (2008) ‘Caracterización de la demanda mensual de electricidad en Colombia usando un modelo de componentes no observables’, Cuadernos de Administración, 21(36), pp. 221–235. http://www.scielo.org.co/pdf/cadm/v21n36/v21n36a10.pdf.
  7. Garzón Medina, D. O. and Marulanda García, G. A. (2017) ‘Estimación del consumo eléctrico colombiano en el corto y largo plazo empleando regresión multivariable y series temporales’, AVANCES Investigación en Ingeniería, 14, p. 155. https://doi.org/10.18041/1794-4953/avances.1.1294.
  8. Gil, D. (2016) ‘Pronóstico de la demanda mensual de electricidad con series de tiempo’, Revista EIA, 13(26), pp. 111–120. https://doi.org/10.24050/reia.v13i26.749.
  9. Goodarzi, S., Perera, H. N. and Bunn, D. (2019) ‘The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices’, Energy Policy. Elsevier Ltd, 134(March), pp. 110827. https://doi.org/10.1016/j.enpol.2019.06.035.
  10. Gulay, E. (2019) ‘Forecasting the Total Electricity Production in South Africa : Comparative Analysis to Improve the Predictive Modelling Accuracy’, 7(November 2018), pp. 88–110. https://doi.org/10.3934/energy.2019.1.88.
  11. Holt, C. C. (1957) Forecasting seasonals and trends by exponentially weighted moving averages. Pittsburgh, Pa.: Carnegie Institute of Technology, Graduate school of Industrial Administration.
  12. IEA (2017) Electricity information overview, IEA Statistics. https://www.iea.org/publications/freepublications/publication/ElectricityInformation2017Overview.pdf.
  13. Islam, M. A. et al. (2020) ‘Energy demand forecasting’, in Energy for Sustainable Development. Elsevier, pp. 105–123. https://doi.org/10.1016/B978-0-12-814645-3.00005-5.
  14. Jimenez, J. et al. (2019) ‘Multivariate Statistical Analysis based Methodology for Long-Term Demand Forecasting’, IEEE Latin America Transactions, 17(01), pp. 93–101. https://doi.org/10.1109/TLA.2019.8826700.
  15. Jiménez, J., Donado, K. and Quintero, C. G. (2017) ‘A methodology for short-term load forecasting’, IEEE Latin America Transactions, 15(3), pp. 400–407. https://doi.org/10.1109/TLA.2017.7867168.
  16. Kubli, M., Loock, M. and Wüstenhagen, R. (2018) ‘The flexible prosumer: Measuring the willingness to co-create distributed flexibility’, Energy Policy, 114(August 2017), pp. 540–548. https://doi.org/10.1016/j.enpol.2017.12.044.
  17. Mohandes, M. (2002) ‘Support vector machines for short-term electrical load forecasting’, International Journal of Energy Research, 26(4), pp. 335–345. doi: 10.1002/er.787.
  18. Nunes Da Silva, I. and Carli Moreira De Andrade, L. (2016) ‘Efficient neurofuzzy model to very short-term load forecasting, IEEE Latin America Transactions, 14(2), pp. 721–728. https://doi.org/10.1109/TLA.2016.7437215.
  19. Percy, S. D., Aldeen, M. and Berry, A. (2018) ‘Residential demand forecasting with solar-battery systems: A survey-less approach’, IEEE Transactions on Sustainable Energy. IEEE, 9(4), pp. 1499–1507. https://doi.org/10.1109/TSTE.2018.2791982.
  20. Pérez Osorno, M. and Betancur Vargas, A. (2017) ‘Gestión del sector minero en el ámbito nacional y su relación entre el accionar gubernamental y empresarial’, Recerca. Revista de pensament i anàlisi., 0(20), pp. 157–184. https://doi.org/10.6035/Recerca.2017.20.8.
  21. R Core Team (2017) ‘R: A Language and Environment for Statistical Computing’. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
  22. Rahman, A. and Ahmar, A. S. (2017) ‘Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models’, in AIP Conference Proceedings, p. 020163. https://doi.org/10.1063/1.5002357.
  23. Rocha, H. R. O. et al. (2018) ‘Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO’, IEEE Latin America Transactions, 16(4), pp. 1136–1141. https://doi.org/10.1109/TLA.2018.8362148.
  24. Romero, F. T., Hernandez, J. D. C. J. and Lopez, W. G. (2011) ‘Predicting electricity consumption using neural networks’, IEEE Latin America Transactions, 9(7), pp. 1066–1072. https://doi.org/10.1109/TLA.2011.6129704.
  25. Rueda, V. M., Velásquez, J. D. and Franco, C. J. (2011) ‘Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales’, Dyna, 167, pp. 36–43. http://www.scielo.org.co/pdf/dyna/v78n167/a04v78n167.pdf.
  26. Shyh-Jier Huang and Kuang-Rong Shih (2003) ‘Short-term load forecasting via ARMA model identification including non-gaussian process considerations’, IEEE Transactions on Power Systems. IEEE, 18(2), pp. 673–679. https://doi.org/10.1109/tpwrs.2003.811010.
  27. Stoffer, D. (2012) ‘astsa: Applied Statistical Time Series Analysis’.
  28. SUI (2016) Sistema Único de Información de Servicios Públicos (SUI), Consolidado Energía. Available at: http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_094.
  29. Velásquez, J. D., Franco, C. J. and García, H. A. (2009) ‘Un modelo no lineal para la predicción de la demanda mensual de electricidad en colombia’, Estudios Gerenciales, 25(112), pp. 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8.
  30. Wang, Y. et al. (2012) ‘Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China’, Energy Policy. (Special Section: Frontiers of Sustainability), 48, pp. 284–294. https://doi.org/10.1016/j.enpol.2012.05.026.
  31. Winters, P. R. (1960) ‘Forecasting Sales by Exponentially Weighted Moving Averages’, Management Science, 6(3), pp. 324–342. https://doi.org/10.1287/mnsc.6.3.324.
  32. XM (2018) Información inteligente. http://informacioninteligente10.xm.com.co/demanda/paginas/default.aspx.
  33. Yang, Y. et al. (2016) ‘Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting’, Applied Soft Computing, 49, pp. 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.