Proposal for Gait Analysis Using Fusion of Inertial-Magnetic and Optical Sensors
Propuesta para el análisis de la marcha mediante fusión de sensores inerciales-magnéticos y ópticos


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
A proposed measurement protocol for the lower limbs movement analysis during walking is presented, with the use of a measurement system based on inertial-magnetic motion processing units and an optical system. Initially, the state of the art in terms of methods and tools for the biomechanical capture of movements is shown, to finally explore the protocols used in the health sciences for the gait analysis. The measurement proposal made in this document uses robust features of inertial-magnetic and optical technology that can be used in medical diagnosis. The application of this proposal can generate tools that have a positive impact in the fields of health and medicine.
Article visits 506 | PDF visits 311
Downloads
- Adamová B., Kutilek P., Cakrt O., Svoboda Z., Viteckova S., Smrcka P. Quantifying postural stability of patients with cerebellar disorder during quiet stance using three-axis accelerometer. Biomed. Signal Process. Control, vol. 40. pp. 378–384, 2018.
- Azman A.M, Kuga H., Sagawa K., Nagai, C. Fastest Gait Parameters Estimation Precision Comparison Utilizing High-Sensitivity and Low-Sensitivity Inertial Sensor. Springer, Singapore. pp. 79–84, 2018.
- Baek S., Kim M. Real-Time Tracking IDs and Joints of Users. VII International Conference on Network, Communication and Computing, pp. 221-226, 2018.
- Bevilacqua V. et al. A comprehensive approach for physical rehabilitation assessment in multiple sclerosis patients based on gait analysis BT. Advances in Intelligent Systems and Computing, vol. 590. Springer Verlag, Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy. pp. 119–128, 2018.
- Bilesan A., Behzadipour S., Tsujita T., Komizunai S., Konno A. Markerless Human Motion Tracking Using Microsoft Kinect SDK and Inverse Kinematics. 12th Asian Control Conference, ASCC 2019, vol. 12, p. 149757, 2019.
- Budzyńska A., Jagielski M., Żyliński M., Cybulski G., Niewiadomski W. Verification of Selected Gait Parameters Derived from Inertial Sensors Using Simple Smartphone Based Optical System. Advances in Intelligent Systems and Computing, vol. 1044, pp. 87-94, 2020.
- Callejas-Cuervo M., Gutierrez R.M., Hernandez A.I. Joint amplitude MEMS based measurement platform for low cost and high accessibility telerehabilitation: Elbow case study. J. Bodyw. Mov. Ther., vol. 21, no. 3. pp. 574–581, 2017.
- Charlton J., Xia H., Shull P., Hunt M. Validity and reliability of a shoe-embedded sensor module for measuring foot progression angle during over-ground walking. Journal of Biomechanics, vol. 89, pp. 123-127, 2019.
- Cuervo M.C., Olaya A.F., Salamanca R.M. Biomechanical motion capture methods focused on tele-physiotherapy. 2013 Pan American Health Care Exchanges PAHCE. pp. 1–6, 2013.
- Dawe R., et al. Expanding instrumented gait testing in the community setting: A portable, depth-sensing camera captures joint motion in older adults. PLOS ONE, vol. 14, no. 5, p. e0215995, 2019.
- Deligianni F., Wong C., Lo B., Yang, G.-Z. A fusion framework to estimate plantar ground force distributions and ankle dynamics. Inf. Fusion, vol. 41. pp. 255–263, 2018.
- El Maachi I., Bilodeau G., Bouachir W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Systems with Applications, vol. 143, p. 113075, 2020.
- Fleron M.K., Ubbesen N.C.H., Battistella F., Dejtiar D.L., Oliveira A.S. Accuracy between optical and inertial motion capture systems for assessing trunk speed during preferred gait and transition periods, Sport. Biomech. pp. 1–12, 2018.
- Hanawa H., et al. Validity of inertial measurement units in assessing segment angles and mechanical energies of elderly persons during sit-to-stand motion. 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2019.
- Iosa M., Picerno P., Paolucci S., Morone G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices, vol. 4444. pp. 1–19, 2017.
- Kim M., Lee D. Wearable inertial sensor based parametric calibration of lower-limb kinematics. Sensors Actuators, A Phys., vol. 265. pp. 280–296, 2017.
- LeMoyne R., Mastroianni T. The rise of inertial measurement units. Smart Sensors, Measurement and Instrumentation, vol. 27. Springer International Publishing, Department of Biological Sciences, Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States. pp. 45–58, 2018.
- McGrath T., Fineman R., Stirling L. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors. Sensors, vol. 18, no. 6. p. 1882, 2018.
- Marxreiter F., et al. Sensor-based gait analysis of individualized improvement during apomorphine titration in Parkinson’s disease. Journal of Neurology. vol. 265, no. 11. pp. 2656-2665, 2019.
- Park S., Ho Y., Chun M., Choi J., Moon Y. Measurement and Analysis of Gait Pattern during Stair Walk for Improvement of Robotic Locomotion Rehabilitation System. Applied Bionics and Biomechanics, vol. 2019, pp. 1-12, 2019.
- Petraglia F., Scarcella L., Pedrazzi G., Brancato L., Puers R., Costantino C. Inertial sensors versus standard systems in gait analysis: a systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, vol. 55, no. 2, 2019.
- Qiu S., Wang Z., Zhao H., Qin K., Li Z., Hu H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion, vol. 39. pp. 108–119, 2018.
- Rana S., Dey M., Ghavami M., Dudley S. Non-Contact Human Gait Identification through IR-UWB Edge-Based Monitoring Sensor. IEEE Sensors Journal, vol. 19, no. 20, pp. 9282-9293, 2019.
- Ren P., et al. Movement Symmetry Assessment by Bilateral Motion Data Fusion. IEEE Transactions on Biomedical Engineering, vol. 66, no. 1, pp. 225-236, 2019.
- Schwartz M.H., Rozumalski A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture. vol. 28, no. 3. pp. 351–357, 2008.
- Shiotani M., Watanabe T., Murakami K., Kuge N. Research on detection method for abnormal gait using three-dimensional thigh motion analysis with inertial sensor. Transactions of Japanese Society for Medical and Biological Engineering, vol. 57, no. 1, pp. 1-7, 2019.
- Sprager S., Juric M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors., vol. 15, no. 9. pp. 22089–22127, 2015.
- Sun C., Wang C., Lai W. Gait analysis and recognition prediction of the human skeleton based on migration learning. Physica A: Statistical Mechanics and its Applications, vol. 532, p. 121812, 2019.
- Tjhai C., Steward J., Lichti D., O’Keefe K. Using a mobile range-camera motion capture system to evaluate the performance of integration of multiple low-cost wearable sensors and gait kinematics for pedestrian navigation in realistic environments. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS. pp. 294–300, 2018.
- Vo N., Tuan A., Van T.V., Vu N., Hau D., Thang N.D. Abnormal Gait Detection and Classification Using Depth Camera. 6th Int.Conf. Dev. Biomed. Eng. Vietnam (BME6), IFMBE Proc. pp. 1–6, 2018.
- Wang Y., Cang S., Yu H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications, vol. 137, pp. 167-190, 2019.
- Wagner J., et al. Comparison of two techniques for monitoring of human movements. Meas. J. Int. Meas. Confed., vol. 111. pp. 420–431, 2017.
- Watanabe T., Tadano T. An Examination of Stimulation Timing Patterns for Mobile FES Cycling Under Closed-Loop Control of Low Cycling Speed. Converging Clinical and Engineering Research on Neurorehabilitation III, vol. 21, pp. 1106-1110, 2018.
- Wolosker N., Nakano L., Rosoky R.A., Puech-Leao P. Evaluation of walking capacity over time in 500 patients with intermittent claudication who underwent clinical treatment. Arch. Intern. Med., vol. 163. pp. 2296–300, 2003.
- Wouda F.J., et al. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors, Front. Physiol., vol. 9. p. 218, 2018.
- Whittle M.W. An Introduction to Gait Analysis. 4th ed. Oxford: Butterworth-Heinemann, 2007.
- Xie N., Mok P.Y. Investigation on human body movements and the resulting body measurement variations. AHFE 2017 International Conference on Physical Ergonomics and Human Factors, vol. 602, Springer Verlag, The Hong Kong Polytechnic University, Kowloon, Hong Kong. pp. 387–399, 2018.
- Xu C., He J., Zhang X., Yao C., Tseng P.-H. Geometrical kinematic modeling on human motion using method of multi-sensor fusion. Inf. Fusion, vol. 41. pp. 243–254, 2018.
- Zago M. et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J. Electromyogr. Kinesiol., vol. 42, pp. 44–48, 2018.