Skip to main navigation menu Skip to main content Skip to site footer

Heavy metals (Hg, As, Cd, Zn, Pb, Cu, Mn) in a stretch of Cauca river impacted by gold mining.

Metales pesados (Hg, As, Cd, Zn, Pb, Cu, Mn) en un trayecto del río Cauca impactado por la minería de oro


Ubicación de los sitios de muestreo en el río Cauca, trayecto Achí-Caucasia.
Open | Download


Section
Articles

How to Cite
Heavy metals (Hg, As, Cd, Zn, Pb, Cu, Mn) in a stretch of Cauca river impacted by gold mining. (2021). Revista EIA, 19(37), 37005 pp. 1-15. https://doi.org/10.24050/reia.v19i37.1481

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

German Enamorado
Jesús Tirado Montoya

In the present study, an evaluation of the concentration of heavy metals (Hg, As, Cd, Zn, Pb, Cu, Mn) in water and total suspended solids was carried out for a stretch of the Cauca River in two seasons (dry - rainy). The Cauca river section studied, from Caucasia (Antioquia) to Achí (Bolívar), 13 sampling stations were selected. For suspended solids the decreasing concentration order of metals was Mn> Zn> Cu> Pb> As> Hg> Cd and for water it was Mn> Hg> Pb> As>Cd. Comparison with the maximum allowable limits of the World Health Organization concluded that only three metals, Hg, Pb and Mn, exceeded the allowable concentration. Average mercury value was 83 µg/L which is a value well above the permissible range, for lead 2 of the 13 sample stations associated with the Nechí River exceeded the maximum allowable limit, on the other hand, Mn in each of the sampling stations exceeded the threshold limits of 400 µg/L. The sources of these pollutants are anthropogenic, possibly associated with mining and agricultural activities characteristic of the study area.


Article visits 2540 | PDF visits 1580


Downloads

Download data is not yet available.
  1. Corporacion Autonoma Regional del Sur de Bolivar - CSB. (2007). PLAN DE ORDENAMIENTO Y MANEJO DE LA CUENCA HIDROGRÁFICA RIO CARIBONA EN JURISDICCIÓN DE LA CORPORACIÓN AUTONOMA REGIONAL DEL SUR DE BOLIVAR “ CSB ” Corporación Social para el Desarrollo Integral de la. 1–213.
  2. Correa, A. R. 2017. Desarrollo socio-económico regional: Impactos de la minería artesanal en el Bajo Cauca antioqueño. Revista Internacional de Cooperación y Desarrollo. 4(1): 46-61. DOI: 10.21500/23825014.3116.
  3. Custodio, M., Peñaloza, R., Espinoza, C., Peralta-Ortiz, T., Ordinola-Zapata, A., Sánchez-Suárez, H., & Vieyra-Peña, E. (2020). Data on the concentration of heavy metals and metalloids in lotic water of the Mantaro river watershed and human risk assessment, Peru. Data in Brief, 30. https://doi.org/10.1016/j.dib.2020.105493
  4. Diaz Arriaga, F. A. (2014). Mercurio en la minería del oro: impacto en las fuentes hídricas destinadas para consumo humano. Revista De Salud Pública, 16(6), 947-957. https://doi.org/10.15446/rsap.v16n6.45406
  5. Güiza Suárez, L. (2014). LA MINERÍA MANUAL EN COLOMBIA: UNA COMPARACIÓN CON AMÉRICA LATINA. Boletín De Ciencias De La Tierra, (35), 37-44. https://doi.org/10.15446/rbct.n35.37056
  6. Instituto de Hidrología, Meteorología y Estudios Ambientales -IDEAM. 2019. Estudio Nacional del Agua 2018. Bogotá: IDEAM.
  7. Londoño Franco, L. F., Londoño Muñoz, P. T., & Muñoz Garcia, F. G. (2016). Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/bsaa(14)145-153
  8. Mancilla-Villa, Ó. R., Ortega-Escobar, H. M., Ramírez-Ayala, C., Uscanga-Mortera, E., Ramos-Bello, R., & Reyes-Ortigoza, A. L. (2011). Metales pesados totales y arsénico en el agua para riego de puebla y Veracruz, México. Revista Internacional de Contaminacion Ambiental, 28(1), 39–48.
  9. Marrugo-Negrete, J., Benitez, L. N., & Olivero-Verbel, J. (2008). Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Archives of Environmental Contamination and Toxicology, 55(2), 305–316. https://doi.org/10.1007/s00244-007-9129-7
  10. Matsuyama, A., Yano, S., Taninaka, T., Kindaichi, M., Sonoda, I., Tada, A., & Akagi, H. (2018). Chemical characteristics of dissolved mercury in the pore water of Minamata Bay sediments.
  11. Marine Pollution Bulletin, 129(2), 503–511. Doi: 10.1016/j.marpolbul.2017.10.021.
  12. Moreno-Huaranga, F., García-Méndez, E., León-Quilcat, V., & Arévalo-Huaranga, F. (2012). Contaminación por metales pesados en la Cuenca del Río Moche, 1980 – 2010, La Libertad – Perú. Scientia Agropecuaria, 3(3), 235–247. http://www.redalyc.org/articulo.oa?id=357633703005
  13. Núñez, S. E. R., Negrete, J. L. M., Rios, J. E. A., Hadad, H. R., & Maine, M. A. (2011). Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water, Air, and Soil Pollution, 216(1–4), 361–373. https://doi.org/10.1007/s11270-010-0538-2
  14. PNUD. 2016. Objetivos de Desarrollo Sostenible, Colombia Herramientas de aproximación al contexto local. Disponible en: https://www.undp.org/content/dam/colombia/docs/ODM/undp-co-ODSColombiaVSWS-2016.pdf.
  15. Raimann, X., Lorena Rodríguez, O., Chávez, P., & Torrejón, C. (2014). Mercury in fish and its importance in health. Revista Medica de Chile, 142(9), 1174–1180. https://doi.org/10.4067/s0034-98872014000900012
  16. RAMIRES y AYALA, R., & AZCONA-CRUZ, M. I. (2017). Efectos tóxicos del manganeso. Rev Esp Méd Quir, 22, 71–76. https://www.medigraphic.com/pdfs/quirurgicas/rmq-2017/rmq172d.pdf
  17. Romero, C. ; Nicodemus, N. ; Rodríguez, J. D. ; García, A. I.; de Blas, C., 2011. Effect of type of grinding of barley and dehydrated alfalfa on performance, digestion, and crude mucin ileal concentration in growing rabbits.. J. Anim. Sci., 89 (8): 2472-2484
  18. Secretaria de medio ambiente, recursos naturales y pesca. (2000). NOM-001-ECOL-1996.Que establece los límtes máximos permisles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de La Federación, 5–29.
  19. Tomno, R. M., Nzeve, J. K., Mailu, S. N., Shitanda, D., & Waswa, F. (2020). Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00539
  20. U.S. EPA (U.S. Environmental Protection Agency), 1988. Integrated Risk Information System (IRIS). Manganese (CASRN 7439-96-5).
  21. U.S. EPA 1989. Risk assessment guidance for Superfund. Volume I: Human health evaluation manual (Part A). Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002. 289 pp. Disponible en https://semspub.epa.gov/work/HQ/191.pdf.
  22. U.S. EPA, 2019. U. S. Environmental Protection Agency. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Disponible en https://semspub.epa.gov/src/document/HQ/199626.
  23. U.S. EPA. 1994a. Method 200.9, Revision 2.2: Determination of Trace Elements by Stabilized Temperature Graphic Furnace Atomic Absorption
  24. U.S. EPA. 1994b. Method 7470A (SW-846): Mercury in Liquid Waste (Manual Cold-Vapor Technique), Revision 1. Washington, DC.
  25. U.S. EPA. 1998. "Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry," Revision 0. Washington, DC.
  26. U.S. EPA. 2007a. “Method 3015A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts,” Revision 1. Washington, DC.
  27. UNODC. 2018. Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016. Disponible en: https://www.unodc.org/documents/colombia/2016/junio/Explotacion_de_Oro_de_Aluvion.pdf.
  28. UNODC. 2018. Explotación de oro de aluvión. Evidencias a partir de percepción remota 2016. Disponible en: https://www.unodc.org/documents/colombia/2016/junio/Explotacion_de_Oro_de_Aluvion.pdf.
  29. UN-WATER, 2016. Towards a Worldwide Assessment of Freshwater Quality. A UN-Water Analytical Brief. UN-Water, Genève, Switzerland. 36pp.
  30. UPME-MME-UNICOR. 2015. Unidad de Planeación Minero Energética, Ministerío de Minas y Energía, Universidad de Córdoba. Estudio de la cadena del mercurío en Colombia con énfasis en la actividad minera de oro. Informe Técnico (Reporte Final) (Bogotá D.C).
  31. Zakir, H. M., Sharmin, S., Akter, A., & Rahman, M. S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar area, Bangladesh. Environmental Advances, 2(August), 100005. https://doi.org/10.1016/j.envadv.2020.100005