Skip to main navigation menu Skip to main content Skip to site footer

An agent-based microsimulation model for COVID-19 dissemination in Medellín-Colombia

Un modelo de microsimulación basado en agentes para la propagación del COVID-19 en Medellín-Colombia


 Incidencia del tipo de infectado en el escenario 2. Un modelo de microsimulación basado en agentes para la propagación del COVID-19 en Medellín-Colombia
Open | Download


Section
Articles

How to Cite
An agent-based microsimulation model for COVID-19 dissemination in Medellín-Colombia. (2021). Revista EIA, 18(36), 36005 pp. 1-16. https://doi.org/10.24050/reia.v18i36.1501

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Cristian Giovanny Gómez Marín
Conrado Augusto Serna-Urán

Cristian Giovanny Gómez Marín,

Estudiante Doctorado Ingeniería-Industría y Orgnaizaciones


Conrado Augusto Serna-Urán,

Conrado Augusto. Serna-Urán. Ingeniero Industrial, PhD, , Jefe de Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano,  Calle 73 No. 76A - 354, Vía al Volador, tel 4405100 opc 9 ext 5295. Cédula de ciudadanía: 15488758. Fecha de nacimiento: 28-09-1977.


Since the outbreak of the novel coronavirus (COVID-19) at December 31ths of 2019 in China it quickly spread to more than 200 countries around the word. Government on affected countries have taken actions such as social distancing in order to decrease the COVID-19 spreading rate. As a way to evaluate how effective are such actions, we design an agent-based microsimulation model that allows for representing the COVID-19 spreading in Medellín, Colombia. Accordingly, we reproduce the number of cases and deaths caused by the COVID-19 according to Medellín-real data by using the proposed model. Also, we test our model with two scenarios: first one with real government actions and second one without any government actions in Medellín-Colombia. Our model results show that early-public-health policies allows for flatting the curve of the COVID-19 spreading in contrast to the scenario without restrictions. As future work, we will include more clusters—e.g., leisure clusters, transport clusters—and the dynamic of the foreign COVID-19 cases.


Article visits 665 | PDF visits 411


Downloads

Download data is not yet available.
  1. Acuña, L., Fuente, J. C., Soler, L. A., Valderrama, F., Daza, M. T., y Barbosa-Vaca, L. (2018). Situacion de la Enfermedad Renal Cróncia, la Hipertensión Arterial y la Diabetes Mellistus en Colombia 2017. Bogota, D.C: Fondo Colombiano de Enfermedades de Alto Costo.
  2. Adnan, M., Outay, F., Ahmed, S., Brattich, E., di Sabatino, S., y Janssens, D. (2020). Integrated agent-based microsimulation framework for examining impacts of mobility-oriented policies. Personal and Ubiquitous Computing, (1–13).
  3. Akira-Toda, A. (2020). Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact. ArXiv Preprint ArXiv:2003.11221., 1–15. Retrieved from http://arxiv.org/abs/2003.11221
  4. Alvarez, F., Argente, D., y Lippi, F. (2020). A Simple Planning Problem for COVID-19 Lockdown. In (No. w26981). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3569911
  5. Anderson, R. ., Heesterbeek, H., Klinkenberg, D., y Hollingsworth, T. . (2020). How will country-based mitigation measures influence the course of the COVID-19 epidem. Lancet, 395(10228), 931–934.
  6. Araya, N., Leger, P., y Lopez, M. (2019). Whom do i Choose to Diffuse Information onTwitter? An Agent-Based Model Approach. IEEE Latin America Transactions, 17(4), 677–683. https://doi.org/10.1109/TLA.2019.8891933
  7. Asociación Colombiana de Infectologia. (2020). Clasificación clínica de casos y estratificación del riesgo de infección por SARS-Cov-2/COVID-19. Infectio. Revista de La Asociación Colombiana de Infectología, 24(3(S1)), 10–13.
  8. Association of Local Authority Medical Advisors. (2020). Covid-19 Medical Risk Assessment. Retrieved September 2, 2020, from Alama.org website: https://alama.org.uk/covid-19-medical-risk-assessment/
  9. Barabási, A.-L., y Réka, A. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512.
  10. Bock, W., Adamik, B., Bawiec, M., Bezborodov, V., Bodych, M., Burgard, J. P., … Szymanski, P. (2020). Mitigation and herd immunity strategy for COVID-19 is likely to fail. MedRxiv, 2020.03.25.20043109. https://doi.org/10.1101/2020.03.25.20043109
  11. Calafiore, G. C., Novara, C., y Possieri, C. (2020). A Modified SIR Model for the COVID-19 Contagion in Italy. ArXiv Preprint ArXiv:2003.14391., 1–6. Retrieved from http://arxiv.org/abs/2003.14391
  12. Cámara de Comercio de Medellín. (2019). Retos para la consolidación de las pymes en Antioquia. Medellín.
  13. Cao, L.-L., Li, X., Kang, F., Liu, C., Sun, F., y Kotagiri, R. (2015). The quantitative and qualitative evaluation of a multi-agent microsimulation model for subway carriage design. International Journal of Microsimulation, 8(3), 6–40. Retrieved from https://www.researchgate.net/publication/311931329
  14. Chao, D. L., Halloran, M. E., Obenchain, V. J., y Longini, I. M. (2010). FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Computational Biology, 6((1):e1000656). https://doi.org/https://doi.org/10.1371/journal.pcbi.1000656
  15. Cohen, H. J., Lan, L., Archer, L., y Kornblith, A. B. (2012). Impact of age, comorbidity and symptoms on physical function in long-term breast cancer survivors (CALGB 70803). J Geriatr Oncol, 3(2), 82–89. https://doi.org/10.1016/j.jgo.2012.01.005
  16. DANE. (2018a). Censo Nacional de Población y Vivienda - CNPV 2018. Dane, 1–27. Retrieved from https://sitios.dane.gov.co/cnpv-presentacion/src/#cuanto00
  17. DANE. (2018b). Microdatos Censo Nacional de Población y Vivienda 2018. Retrieved April 25, 2020, from Censo Nacional de Población y Vivienda - CNPV-2018 website: http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata
  18. DANE. (2020a). Boletín Técnico Principales indicadores del mercado laboral Febrero de 2020. Bogota.
  19. DANE. (2020b). Principales indicadores del mercado laboral Abril de 2020. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/ech/ech/bol_empleo_abr_20.pdf
  20. Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., y Dighe, A. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.London: Imperial College COVID-19 Response Team, March, 16.
  21. Fernando, C., Rojas, R., Alejandra, J., y Vanegas, N. (2019). Determinantes socioeconómicos y nutricionales del sobrepeso y la obesidad en la población adulta del departamento del Guaviare. Bogota D.C.
  22. Hoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M. S., … Leleu, H. (2020). A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nature Medicine. https://doi.org/10.1038/s41591-020-1001-6
  23. Instituto Nacional de Salud [INS]. (2020). Covid-19 Colombia. Retrieved May 3, 2020, from Reporte COVID-19 03-05-2020 website: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx
  24. Kuzmar, I., Giraldo-Ospina, C. E., Acevedo-Osorio, G. O., y Rua-Salas, G. (2018). Morbilidad de la Enfermedad Pulmonar Obstructiva Crónica en Colombia. Resultados del Estudio SANEPOC-2. Revista de La Facultad de Ciencias Médicas, 75(1), 19. https://doi.org/10.31053/1853.0605.v75.n1.16617
  25. Leleu, H., Hoertel, N., Massetti, M., y Blachier, M. (2020). Should We Quickly Get Out of Confinement to Face COVID-19 Pandemic? Estimating the Medical Outcomes of Different Public Health Strategies Using a Robust Microsimulation Agent-Based Model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3569844
  26. Li, J., y O’Donoghue, C. (2013). A survey of dynamic microsimulation models: uses, model structure and methodology. International Journal of Microsimulation, 6, 3–55. https://doi.org/10.1093/jae/ejm029
  27. Mellan, T. A., Hoeltgebaum, H. H., Mishra, S., Whittaker, C., Schnekenberg, R. P., Gandy, A., … Jeff Eaton, Sabine L van Elsland, Richard FitzJohn, Keith Fraser, Katy Gaythorpe, Will Green, Sarah Hayes, Natsuko Imai, Ben Jeffrey, Edward Knock, Daniel Laydon, John Lees, Tara Mangal, Andria Mousa, Gemma Nedjati-Gilani, Pierre Nouvellet, Daniela Oliver, S. F. and S. B. (2020). Report 21: Estimating COVID-19 cases and reproduction number in Brazil. Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news- wuhan-coronavirus
  28. Metropolitana, Á. (2018). Datos Abiertos Área Metropolitana del Valle de Aburra. Encuesta Origen Destino 2017 - Datos por Viajes. Retrieved from https://datosabiertos.metropol.gov.co/dataset/encuesta-origen-destino-2017-datos-por-viajes
  29. Ministerio de Educacion Nacional. Resolución 1730 de 2004. , (2004).
  30. Ministerio de Educacion Nacional. (2015). Consulta número de alumnos por aula (Vol. 2015-ER-14). Retrieved from https://www.mineducacion.gov.co/1759/articles-354336_archivo_pdf_Consulta.pdf
  31. Ministerio de Salud y Proteccion Social. (2016). Perfiles de Morbilidad Atendida en el Sistema de Seguridad Social en Salud Régimen Contributivo y Subsidiado. Año 2014. In El aseguramiento en cifras (Vol. 4006). Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VP/RBC/aseguramiento-cifras-2016-no.9-enero.pdf
  32. Ministerio de Salud y Proteccion Social. (2020). Capacidad instalada para atencion. Retrieved May 14, 2020, from https://minsalud.maps.arcgis.com/apps/opsdashboard/index.html#/1de89936b24449edb77e162d485ed5d9
  33. Montañola-Sales, C., Gilabert-Navarro, J. F., Casanovas-Garcia, J., Prats, C., López, D., Valls, J., y Vilaplana, C. (2015). Modeling tuberculosis in Barcelona. A solution to speed-up agent-based simulations. In 2015. Winter Simulation Conference (WSC) . IEEE., 1295–1306.
  34. Monteiro, J. F. G., Escudero, D. J., Weinreb, C., Flanigan, T., Galea, S., Friedman, S. R., y Marshall, B. D. L. (2016). Understanding the effects of different HIV transmission models in individual-based microsimulation of HIV epidemic dynamics in people who inject drugs. Epidemiology y Infection, 144(8), 1683-1700.
  35. Nabi, K. N. (2020). Forecasting COVID-19 pandemic: A data-driven analysis. Chaos, Solitons and Fractals, 139, 110046. https://doi.org/10.1016/j.chaos.2020.110046
  36. O’Donoghue, C. (2014). Introduction. In C. O’Donoghue (Ed.), Handbook of Microsimulation Modelling (pp. 1–21). https://doi.org/10.1108/S0573-855520140000293001
  37. Palacios-Cruz, M., Santos, E., Velázquez-Cervantes, M. A., y León-Juárez, M. (2020). COVID-19, a worldwide public health emergency. Revista Clinica Espanola, (xx), 1–7. https://doi.org/10.1016/j.rce.2020.03.001
  38. Pardo, M., y Farinas-Coronado, W. (2016). Agent-based Modeling and Simulation to Adoption Process of Information Technologies in Health Systems. IEEE Latin America Transactions, 14(7), 3358–3363. https://doi.org/10.1109/TLA.2016.7587642
  39. Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., … Klepac, P. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 261–270. https://doi.org/10.1016/S2468-2667(20)30073-6
  40. Presidencia de la República. Decreto Número 457 del 22 de marzo de 2020. , (2020).
  41. República de Colombia. Decreto 2663 de 1950. Codigo Sustantivo del Trabajo. , (1950).
  42. Revista Dinero. (2016). Pymes contribuyen con más del 80% del empleo en Colombia. Dinero, 3. Retrieved from https://www.dinero.com/edicion-impresa/caratula/articulo/porcentaje-y-contribucion-de-las-pymes-en-colombia/231854
  43. Richiardi, M., y Richardson, R. (2017). JAS-mine: A new platform for microsimulation and agent-based modelling. International Journal of Microsimulation, 10(1), 106–134. Retrieved from http://www.microsimulation.org/IJM/V10_1/IJM_2017_10_1_4.pdf
  44. Smith, S. K., Tayman, J., y Swanson, D. A. (2013). Structural and microsimulation models. In A Practitioner’s Guide to State and Local Population Projections (pp. 215–249). https://doi.org/10.1007/978-94-007-7551-0_9
  45. Tu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., … Chiou, S.-H. (2020). A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072657
  46. Venkatramanan, S., Lewis, B., Chen, J., Higdon, D., Vullikanti, A., y Marathe, M. (2018). Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics, Vol. 22, pp. 43–49. https://doi.org/10.1016/j.epidem.2017.02.010
  47. World Health Organization. (2020a). Cumulative COVID-19 cases reported by countries and territories in the Americas. Retrieved May 6, 2020, from Cumulative COVID-19 cases reported by countries and territories in the Americas website: https://who.maps.arcgis.com/apps/webappviewer/index.html?id=2203b04c3a5f486685a15482a0d97a87yextent=-17277700.8881%2C-1043174.5225%2C-1770156.5897%2C6979655.9663%2C102100
  48. World Health Organization. (2020b). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).
  49. Worldometer. (2020). Coronavirus Update (Live). Retrieved May 13, 2020, from https://www.worldometers.info/coronavirus/
  50. Yepes, V. (2018). ¿Cuánto tiempo dedican los colombianos a las compras en tiendas físicas? Retrieved September 5, 2020, from https://www.colombia.com/vida-y-estilo/mujer/cuanto-tiempo-dedican-los-colombianos-a-las-compras-en-tiendas-fisicas-201492