Skip to main navigation menu Skip to main content Skip to site footer

Dynamic study of NI (II) adsorption onto Musa aab simmonds residue.

Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds


Estudio dinámico de adsorción de Ni (II) sobre residuos de Musa aab simmonds.
Open | Download


Section
Articles

How to Cite
Dynamic study of NI (II) adsorption onto Musa aab simmonds residue . (2022). Revista EIA, 19(38), 3819 pp. 1-17. https://doi.org/10.24050/reia.v19i38.1537

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Candelaria Nahir Tejada Tovar,

Ingeniera Química, Magister en Ingeniería Ambiental, Profesora Titular del programa del programa de Ingeniería Química, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia, Process Design and Biomass Utilization Research Group (IDAB), Avenida del Consulado Calle 30 No. 48 – 152, Colombia; 130015


The Ni (II) adsorption dynamics was studied from the residual cake of the starch extraction process of plantain in a fixed bed column varying the temperature and bed height. The biomass was characterized by elemental analysis and FTIR. The final concentration of the ion was determined by atomic absorption spectrophotometry. It was found that the hydroxyl and carboxyl groups present in the biomass are the main protagonists in the adsorption of the heavy metal ion. From ANOVA it was determined that the studied variables do not have significant effects on the process. The breakthrough curve a maximum capacity achieved was 18.72 mg/g. The response-dose model fitted better the whole dynamic behavior of the continuous adsorption of Ni (II) rather than the others, concluding that the residual cake used is a low cost alternative very efficient in the removal of Ni (II) at room temperature.


Article visits 419 | PDF visits 251


Downloads

Download data is not yet available.
  1. Abbas, A.; Hussain, M. A.; Sher, M.; Irfan, M. I.; Tahir, M. N.; Tremel, W.; Hussain, S. Z.; & Hussain, I. (2017). Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. International Journal of Biological Macromolecules, 102, 170–180. https://doi.org/10.1016/j.ijbiomac.2017.04.024
  2. Abdolali, A.; Ngo, H. H.; Guo, W.; Zhou, J. L.; Zhang, J.; Liang, S.; Chang, S. W.; Nguyen, D. D.; & Liu, Y. (2017). Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.016
  3. Altino, H. O. N.; Costa, B. E. S.; & Da Cunha, R. N. (2017). Biosorption optimization of Ni(II) ions on Macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column. Journal of Environmental Chemical Engineering, 5(5), 4895–4905. https://doi.org/10.1016/j.jece.2017.09.025
  4. Azadi, F.; Saadat, S.; & Karimi-Jashni, A. (2018). Experimental Investigation and Modeling of Nickel Removal from Wastewater Using Modified Rice Husk in Continuous Reactor by Response Surface Methodology. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 42(3), 315–323. https://doi.org/10.1007/s40996-017-0090-z
  5. Azimi, A.; Azari, A.; Rezakazemi, M.; & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
  6. Barquilha, C. E. R.; Cossich, E. S.; Tavares, C. R. G.; & Silva, E. A. (2017). Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64. https://doi.org/10.1016/j.jclepro.2017.02.199
  7. Bibaj, E.; Lysigaki, K.; Nolan, J. W.; Seyedsalehi, M.; Deliyanni, E. A.; Mitropoulos, A. C.; & Kyzas, G. Z. (2019). Activated carbons from banana peels for the removal of nickel ions. International Journal of Environmental Science and Technology, 16(2), 667–680. https://doi.org/10.1007/s13762-018-1676-0
  8. Boucherdoud, A.; Kherroub, D. E.; Bestani, B.; Benderdouche, N.; Douinat, O.; & History, A. (2021). Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents ARTICLE INFO ABSTRACT/RESUME. Algerian Journal of Environmental Science and Technology Month Edition, 0(0). www.aljest.org
  9. Butler, L.; Lall, U.; & Bonnafous, L. (2017). Cumulative heavy metal contamination in mining areas of the Rimac, Peru basin (pp. 1–27). http://water.columbia.edu/files/2018/01/13.2017.Butler.Draft_.Cumulative-heavy-metal-contamination-in-mining-areas.pdf
  10. Chao, H. P.; Chang, C. C.; & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. Journal of Industrial and Engineering Chemistry, 20(5), 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027
  11. Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; & Catalano, A. (2020). Nickel: Human health and environmental toxicology. In International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17030679
  12. Gómez, V. E.; Herrera, A. P.; & Sánchez, J. H. (2019). Removal of acetylsalicylic acid (Asa) in packed microcolumns with carbon xerogel modified with TiO2 nanoparticles. Ingenieria e Investigacion, 39(2), 11–20. https://doi.org/https://doi.org/10.15446/ing.investig.v39n2.67604
  13. Herrera-Barros, A.; Bitar-Castro, N.; Villabona-Ortíz, Á.; Tejada-Tovar, C.; & González-Delgado, Á. D. (2020). Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustainable Chemistry and Pharmacy, 17, 100299. https://doi.org/10.1016/j.scp.2020.100299
  14. Hokkanen, S.; Bhatnagar, A.; & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156–173. https://doi.org/https://doi.org/10.1016/j.watres.2016.01.008
  15. Jafari, S. A.; & Jamali, A. (2016). Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles. Korean Journal of Chemical Engineering, 33(4), 1296–1304. https://doi.org/10.1007/s11814-015-0261-1
  16. Li, W.; Yan, J.; Yan, Z.; Song, Y.; Jiao, W.; Qi, G.; & Liu, Y. (2018). Adsorption of phenol by activated carbon in rotating packed bed: Experiment and modeling. Applied Thermal Engineering, 142, 760–766. https://doi.org/10.1016/j.applthermaleng.2018.07.051
  17. Liao, B.; Sun, W. yi; Guo, N.; Ding, S. lan; & Su, S. jun. (2016). Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 32–41. https://doi.org/10.1016/j.colsurfa.2016.04.043
  18. Mahmood-Ul-Hassan, M.; Yasin, M.; Yousra, M.; Ahmad, R.; & Sarwar, S. (2018). Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environmental Science and Pollution Research, 25(13), 12570–12578. https://doi.org/10.1007/s11356-018-1300-3
  19. Maniglia, B. C.; & Tapia-bl, D. R. (2016). Food Hydrocolloids Isolation and characterization of starch from babassu mesocarp. 55, 47–55. https://doi.org/https://doi.org/10.1016/j.foodhyd.2015.11.001
  20. Martín-Lara, M. Á.; Trujillo Miranda, M. C.; Ronda, A.; Pérez Muñoz, A.; & Calero de Hoces, M. (2017). Valorization of olive stone as adsorbent of chromium(VI): comparison between laboratory- and pilot-scale fixed-bed columns. International Journal of Environmental Science and Technology, 14(12), 2661–2674. https://doi.org/10.1007/s13762-017-1345-8
  21. Meneguin, J. G.; Moisés, M. P.; Karchiyappan, T.; Faria, S. H. B.; Gimenes, M. L.; de Barros, M. A. S. D.; & Venkatachalam, S. (2017). Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling. Process Safety and Environmental Protection, 111, 244–252. https://doi.org/10.1016/j.psep.2017.07.005
  22. Mishra, A.; Dutt, B.; & Kumar, A. (2016). Packed-bed column biosorption of chromium (VI) and nickel (II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420–428. https://doi.org/10.1016/j.ecoenv.2016.06.026
  23. Moino, B. P.; Costa, C. S. D.; da Silva, M. G. C.; & Vieira, M. G. A. (2017). Removal of nickel ions on residue of alginate extraction from Sargassum filipendula seaweed in packed bed. Canadian Journal of Chemical Engineering, 95(11), 2120–2128. https://doi.org/10.1002/cjce.22859
  24. Moscatello, N.; Swayambhu, G.; Jones, C. H.; Xu, J.; Dai, N.; & Pfeifer, B. A. (2018). Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column. Chemical Engineering Journal, 343, 173–179. https://doi.org/10.1016/j.cej.2018.02.093
  25. Ratan, S.; Singh, I.; Sarkar, J.; & Rm, N. (2016). The Removal of Nickel from Waste Water by Modified Coconut Coir Pith. Chemical Sciences Journal, 7(3), 1–6. https://doi.org/10.4172/2150-3494.1000136
  26. Romero-Cano, L. A.; García-Rosero, H.; Gonzalez-Gutierrez, L. V.; Baldenegro-Pérez, L. A.; & Carrasco-Marín, F. (2017). Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.032
  27. Saadat, S.; Hekmatzadeh, A. A.; & Karimi Jashni, A. (2016). Mathematical modeling of the Ni(II) removal from aqueous solutions onto pre-treated rice husk in fixed-bed columns: a comparison. Desalination and Water Treatment, 57(36), 16907–16918. https://doi.org/10.1080/19443994.2015.1087877
  28. Singh, S.; & Shukla, S. R. (2017). Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12526
  29. Sivarajasekar, N.; Mohanraj, N.; Baskar, R.; & Sivamani, S. (2018). Fixed-Bed Adsorption of Ranitidine Hydrochloride Onto Microwave Assisted—Activated Aegle marmelos Correa Fruit Shell: Statistical Optimization and Breakthrough Modelling. Arabian Journal for Science and Engineering, 43(5), 2205–2215. https://doi.org/10.1007/s13369-017-2565-4
  30. Šoštarić, T. D.; Petrović, M. S.; Pastor, F. T.; Lončarević, D. R.; Petrović, J. T.; Milojković, J. V.; & Stojanović, M. D. (2018). Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. Journal of Molecular Liquids, 259, 340–349. https://doi.org/10.1016/j.molliq.2018.03.055
  31. Sreenivas, K. M.; Inarkar, M. B.; Gokhale, S. V.; & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2(1), 455–462. https://doi.org/10.1016/j.jece.2014.01.017
  32. Šuránek, M.; Melichová, Z.; Kureková, V.; Kljajević, L.; & Nenadović, S. (2021). Removal of Nickel from Aqueous Solutions by Natural Bentonites from Slovakia. Materials, 14(2), 282. https://doi.org/10.3390/ma14020282
  33. Tejada-Tovar, C.; Gallo-Mercado, J.; Moscote, J.; Villabona-Ortíz, A.; & Acevedo-Correra, D. (2018). Competitive adsorption of lead and nickel ont yam husk and palm bagasse in continuous system. Revista Biotecnología En El Sector Agropecuario y Agroindustrial, 16(1), 52–61. https://doi.org/http://dx.doi.org/10.18684/bsaa.v16n1.624
  34. Tejada-Tovar, C. N.; Villabona-Ortíz, A.; & Ortega-Toro, R. (2020). Cr(VI) biosorption: Effect of temperature,particle size and bed height. Revista Facultad de Ingenieria, 96, 78–86. https://doi.org/10.17533/udea.redin.20191149
  35. Valencia, J. A. R.; González, J. P.; Jimenez-Pitre, I.; & Molina-Bolívar, G. (2019). Physico-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. Journal of Water and Land Development, 43(1), 171–176. https://doi.org/10.2478/jwld-2019-0075
  36. Villabona-Ortíz, A.; Tejada-Tovar, C.; González-Delgado, Á. D.; Herrera-Barros, A.; & Cantillo-Arroyo, G. (2019). Immobilization of Lead and Nickel Ions from Polluted Yam Peels Biomass Using Cement-Based Solidification/Stabilization Technique. International Journal of Chemical Engineering, 2019. https://doi.org/https://doi.org/10.1155/2019/5413960