Skip to main navigation menu Skip to main content Skip to site footer

Influence of Resolution 0472 of 2017 on the emissions of the Colombian construction sector

Influencia de la Resolución 0472 de 2017 en las emisiones del sector constructor colombiano


Influencia de la Resolución 0472 de 2017 en las emisiones del sector constructor colombiano.
Open | Download


Section
Articles

How to Cite
Influence of Resolution 0472 of 2017 on the emissions of the Colombian construction sector. (2022). Revista EIA, 19(38), 3815 pp. 1-12. https://doi.org/10.24050/reia.v19i38.1554

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


It is now recognized that the construction sector is one of the main generators of Construction and Demolition Waste (CDW) and emissions of greenhouse gases (GHG) worldwide. While nationally there is Resolution 0472 of 2017 to carry out proper management of the CDW, it is important to analyze the influence of compliance with this standard in the generation and GHG possible reduction nationwide. For this reason, the present research aims to technically assess the relationship between policy management component RCD (Resolution 472, 2017) and reducing the carbon footprint in the first phase of the construction cycle, setting a case study one high-rise building located in the Medellin city. Four scenarios of compliance with Programa de Manejo Ambiental (PMA) were proposed based on different concrete mix designs of compressive strength 24 MPa, also evaluating the carbon footprint of each scenario. Concrete mix designs presented the inclusion of superplasticizer admixtures, partial substitutions of cement for fly ash and / or partial substitutions of virgin aggregates for recycled aggregates. The results showed that in order to comply with the CDW regulations, the partial replacement of virgin aggregates with recycled aggregates is strategic (scenario 3), but for the reduction in the carbon footprint, the partial replacement of cement with fly ash, including superplasticizer admixtures, is important (scenario 2). Therefore, the stage 4 which links all the above strategies has high percentages of compliance (17.2% versus 11.3% in the baseline scenario) and a reduction in carbon footprint (338.1 kg CO2/m2 versus 438.1 kg CO2/m2 in the baseline scenario).


Article visits 386 | PDF visits 351


Downloads

Download data is not yet available.
  1. Abd Rashid, A. F. y Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. https://doi.org/10.1016/j.rser.2015.01.043
  2. ANDI. (2020). Produccion mensual acero crudo y largos a Noviembre 2019 con importaciones a Septiembre 2019.
  3. Área metropolitana del Valle de Aburrá; Camacol Antioquia; One Planet build with care - UNEP. (2018). Implementación de la Política Pública de Construcción Sostenible.
  4. ARGOS. (2019). Integrated Report. Investments that transform.
  5. CEMEX. (2019). Integrated Report. Safe. Essential. Resilient.
  6. Cho, S. H., & Chae, C. U. (2016). A study on life cycle CO2 emissions of low-carbon building in South Korea. Sustainability (Switzerland), 8(6), 1–19. https://doi.org/10.3390/su8060579
  7. Ecoinvent. (2013). Bases de datos versión 3.01.
  8. García Arbeláez, C.; Vallejo López, G.; Higgins, M. Lou; Escobar, E. M. (2016). El Acuerdo de París. Así actuará Colombia frente al cambio climático.
  9. Gobierno de Colombia. (2020). Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC).
  10. Hasanbeigi, A. (2021). Global Cement Industry’s GHG Emissions. Global Efficiency Intelligence, LLC. https://www.globalefficiencyintel.com/new-blog/2021/global-cement-industry-ghg-emissions
  11. Ministerio de Ambiente y Desarrollo Sostenible. (2017). RESOLUCIÓN 0472 DE 2017.
  12. Nazari, A., & Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete (Joe Hayton (ed.); 1st ed.). Elsevier.
  13. Pardo, N.; Penagos, G.; González, A.; Botero, A. (2017). Calculation of greenhouse gases in the construction sector in the Aburrá Valley, Colombia. Proceedings of 33rd PLEA International Conference: Design to Thrive, PLEA 2017, 1, 932–939.
  14. PVG Arquitectos. (2018). Información interna de investigación.
  15. Salazar Jaramillo, A. (2012). Determinación de propiedades físicas y estimación del consumo energético en la producción, de acero, concreto, vidrio, ladrillo y otros materiales, entre ellos los alternativos y otros de uso no tradicional, utilizados en la construcción de edificaciones.
  16. Seo, M. S.; Kim, T.; Hong, G.; Kim, H. (2016). On-Site measurements of CO2 emissions during the construction phase of a building complex. Energies, 9(8), 1–13. https://doi.org/10.3390/en9080599
  17. SIKA. (2017). Concreto. Aditivos para concreto.
  18. Sinha, R.; Lennartsson, M.; Frostell, B. (2016). Environmental footprint assessment of building structures: A comparative study. Building and Environment, 104, 162–171. https://doi.org/10.1016/j.buildenv.2016.05.012
  19. Tam, V. W. Y.; Le, K. N.; Shen, L. (2016). Life Cycle Assessment on Green Building Implementation. 1st ed., Vol. 1.
  20. UPME y SIEL. (2019). Estadísticas y variables de generación. http://www.siel.gov.co/Inicio/Generación/Estadísticasyvariablesdegeneración/tabid/115/Default.aspx
  21. Wu, X.; Peng, B.; Lin, B. (2017). A Dynamic Life Cycle Carbon Emission Assessment on Green and Non-Green Buildings in China. Energy and Buildings, 149, 272–281. https://doi.org/10.1016/j.enbuild.2017.05.041