Real-time detection of atrial fibrillation on single board computer
Detección en tiempo real de fibrilación auricular en computador de placa reducida


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Development of portable devices, that allows real-time detection of atrial fibrillation, requires the implementation of automatic pattern recognition algorithms and an appropriate methodology for their execution in embedded systems. In the present article, the performances of an artificial neural network, a machine vector support, a k-nearest neighbors algorithm and a hybrid classifier implemented on a single-board computer, were compared in terms of detection capacity of arrhythmia and time response associated with real-time execution. The MIT-BIH AFIB database was used to train and validate the algorithms. In advance, the extraction of parameters associated with the stationary wavelet transform was developed. Results between 92 % and 97 % for sensitivity and specificity, and time responses between 6 s and 7.1 s were found in this research.
Article visits 311 | PDF visits 246
Downloads
- A. A. Basaif, S. Aljunid, N. Sabri, M. I. Omer, and M. Salim, “Design and implementation of an embedded system to analysis an ecg signal for heart diagnosis system,” Journal of Theoretical and Applied Information Technology, vol. 91, no. 2, p. 289, 2016.
- A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. DOI: 10.1161/01.CIR.101.23.e215
- C. Rodriguez, J. Gallego, I. D. Mora, A. Orozco-Duque, and J. Bustamante, “Clasificación de latidos de contracción ventricular prematura basados en métodos de aprendizaje no supervisado” Revista Ingeniería Biomédica, vol. 8, no. 15, p. 51, 2014. DOI: 0.24050/19099762.n15.2014.608
- D. Batista and A. Fred, “Spectral and time domain parameters for the classification of atrial fibrillation,” in Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015), 2015, pp. 329–337.
- D. F. Ransohoff, “Rules of evidence for cancer molecular-marker discovery and validation,” Nature Reviews Cancer, vol. 4, no. 4, p. 309, 2004. DOI: 10.1038/nrc1322
- D. J. Gladstone, R. Spring et al., “Atrial fibrillation in patients with cryptogenic stroke,” New England Journal of Medicine, vol. 370, no. 26, pp. 2467–2477, 2014. DOI: 10.1056/NEJMoa1311376
- D. I. Vanegas-Cadavid, “Uso del monitor cardiaco implantable en fibrilación auricular,” Revista Colombiana de Cardiología, vol. 23, pp. 34–39, 2016. DOI: 10.1016/j.rccar.2016.10.031
- G. Mora-Pabón, “Utilidad del monitor externo de eventos en el tratamiento del paciente con fibrilación auricular,” Revista Colombiana de Cardiología, vol. 23, pp. 40–43, 2016. DOI:10.1016/j.rccar.2016.11.005
- H. W. Lim, Y. W. Hau, C. W. Lim, and M. A. Othman, “Artificial intelligence classification methods of atrial fibrillation with implementation technology,” Computer Assisted Surgery, vol. 21, no. sup1, pp. 154–161, 2016. DOI: 10.1080/24699322.2016.1240303
- J. J. Carvajal, C. Clavijo, L. J. Bautista, and G. Mora, “Características clínicas de pacientes llevados a monitoría externa de eventos,” Revista Colombiana de Cardiología, vol. 21, no. 5, pp. 278–283, 2014. DOI: 10.1016/j.rccar.2013.11.001
- J. Pérez-Rodon, J. Francisco-Pascual, N. Rivas-G´andara, I. Roca-Luque, N. Bellera, and A` . Moya-Mitjans, “Cryptogenic stroke and role of loop recorder,” Journal of Atrial Fibrillation, vol. 7, no. 4, 2014. DOI: 10.4022/jafib.1178.
- J. Vogler, G. Breithardt, and L. Eckardt, “Bradiarritmias y bloqueos de la conducción,” Revista Española de Cardiología, vol. 65, no. 7, pp. 656–667, 2012. DOI: 10.1016/j.recesp.2012.01.025
- L. Villa-Rodríguez, J. D. Lemos-Duque et al., “Desarrollo de un holter digital con grabación de eventos y software de visualización,” Revista ingeniería biomédica, 2014. DOI: 10.24050/19099762.n7.2010.84
- M. A. Rockx, J. S. Hoch, and Klein, “Is ambulatory monitoring for “community-acquired” syncope economically attractive? A cost-effectiveness analysis of a randomized trial of external loop recorders versus Holter monitoring,” American heart journal, vol. 150, no. 5, pp. 1065–e1, 2005. DOI: 10.1016/j.ahj.2005.08.003
- M. R. Homaeinezhad, S. Atyabi, E. Tavakkoli, H. N. Toosi, A. Ghaffari, and R. Ebrahimpour, “Ecg arrhythmia recognition via a neuro-svm–knn hybrid classifier with virtual qrs image-based geometrical features,” Expert Systems with Applications, vol. 39, no. 2, pp. 2047– 2058, 2012. DOI:10.1016/j.eswa.2011.08.025
- N. Larburu, T. Lopetegi, and I. Romero, “Comparative study of algorithms for atrial fibrillation detection,” in Computing in Cardiology, 2011. IEEE, 2011, pp. 265–268.
- P. Zimetbaum and A. Goldman, “Ambulatory arrhythmia monitoring,” Circulation, vol. 122, no. 16, pp. 1629 – 1636, 2010. DOI: 10.1161/CIRCULATIONAHA.109.925610
- Q. He, B. Segee, and V. Weaver, “Raspberry pi 2 b gpu power, performance, and energy implications,” in Computational Science and Computational Intelligence (CSCI), 2016 International Conference on. IEEE, 2016, pp. 163–167. DOI: 10.1109/CSCI.2016.0038
- R. Colloca, A. E. Johnson, L. Mainardi, and G. D. Clifford, “A support vector machine approach for reliable detection of atrial fibrillation events,” in Computing in Cardiology Conference (CinC), 2013. IEEE, 2013, pp.1047–1050.
- R. J. Martis, U. R. Acharya, and H. Adeli, “Current methods in electrocardiogram characterization,” Computers in biology and medicine, vol. 48, pp. 133–149, 2014. DOI: 10.1016/j.compbiomed.2014.02.012
- S. Asgari, A. Mehrnia, and M. Moussavi, “Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine,” Computers in biology and medicine, vol. 60, pp. 132–142, 2015. DOI: 10.1016/j.compbiomed.2015.03.005
- S. Mittal, C. Movsowitz, and J. S. Steinberg, “Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation,” Journal of the American College of Cardiology, vol. 58, no. 17, pp. 1741–1749, 2011. DOI: 10.1016/j.jacc.2011.07.026.
- S. Sovilj, G. Rajsman, and R. Magjarevi´c, “Ecg based prediction of atrial fibrillation using support vector classifier,” AUTOMATIKA: Journal of Automation, Measurement, Electronics, Computing and Communications, vol. 52, no. 1, pp. 58–67, 2011. DOI: 10.1080/00051144.2011.11828404
- S. Raj, S. Luthra, and K. C. Ray, “Development of handheld cardiac event monitoring system,” IFACPapersOnLine, vol. 48, no. 4, pp. 71–76, 2015. DOI: 10.1016/j.ifacol.2015.07.010
- T. Jeon, B. Kim, M. Jeon, and B.-G. Lee, “Implementation of a portable device for real-time ecg signal analysis,” Biomedical engineering online, vol. 13, no. 1, p. 160, 2014. DOI:10.1186/1475-925X-13-160.
- W. contributors, “K-nearest neighbors algorithm wikipedia the free encyclopedia,” 2018, [Online; accessed 9-October-2021]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=K-nearest neighbors algorithm&oldid=827389390