Skip to main navigation menu Skip to main content Skip to site footer

Characterization of swallowing sounds through Cervical Auscultation in healthy and dysphagic subjects.

Caracterización de sonidos deglutorios adquiridos mediante auscultación cervical en sujetos sanos y con disfagia.


Diagrama de cajas y bigotes de energía de coeficiente de aproximación wavelet de agua 10 mL.
Open | Download


Section
Articles

How to Cite
Characterization of swallowing sounds through Cervical Auscultation in healthy and dysphagic subjects. (2022). Revista EIA, 19(38), 3831 pp. 1-12. https://doi.org/10.24050/reia.v19i38.1579

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Swallowing is an act of high neuromuscular complexity due to the involvement of more than 30 muscle pairs and 5 cranial pairs that occurs in a short period of time. This activity is divided into 4 stages: pre-oral, oral, oropharyngeal and esophageal, an alteration in the normal development of this process can develop a symptom secondary to neuromuscular and neurogenic diseases that is known as dysphagia. Dysphagia can bring many difficulties for those who suffer from it including bronchial pneumonia, malnutrition, dehydration or even death by asphyxia. The identification of characteristics that help recognize this symptom, in addition to correctly describing the swallowing process is of great importance since the existing methods are invasive. Cervical auscultation is a technique by which information about the gothic closure can be obtained in the swallowing process using audio signals, and which can be analyzed offline. The aim of this study is to evaluate different methods of characterization of cervical auscultation signals and develop a machine learning model with manually segmented swallowing event sounds to classify between control subjects and patients with oropharyngeal dysphagia. The results showed, with a maximum accuracy of 75% that by means of signs is cervical auscultation it is possible to identify dysphageal subjects. In the same way it was possible to identify that the average potency of the swallowing segments was the feature with the best score (ROC curve) and that exists a different distribution between classes in this characteristic according to the U-Mann-whitney test to discriminate between healthy and pathologic subjects during different swallowing activities.


Article visits 843 | PDF visits 744


Downloads

Download data is not yet available.
  1. A. Sasegbon and S. Hamdy, “The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia,” Neurogastroenterology and Motility, vol. 29, no. 11, pp. 1–15, 2017, doi: 10.1111/nmo.13100.
  2. C. Donohue, S. Mao, E. Sejdić, and J. L. Coyle, “Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals,” Dysphagia, vol. 36, no. 2, pp. 259–269, 2021, doi: 10.1007/s00455-020-10124-z.
  3. C. Donohue, Y. Khalifa, S. Perera, E. Sejdić, and J. L. Coyle, “A Preliminary Investigation of Whether HRCA Signals Can Differentiate Between Swallows from Healthy People and Swallows from People with Neurodegenerative Diseases,” Dysphagia, vol. 36, no. 4, pp. 635–643, 2021, doi: 10.1007/s00455-020-10177-0.
  4. C. Rebrion et al., “High-Resolution Cervical Auscultation Signal Features Reflect Vertical and Horizontal Displacements of the Hyoid Bone during Swallowing,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 7, no. October 2018, 2019, doi: 10.1109/JTEHM.2018.2881468.
  5. D. G. Smithard, “Dysphagia : A Geriatric Giant ? The Normal Swallow,” iMedPub Journals, vol. 2, no. 1:5, pp. 1–7, 2016, doi: 10.21767/2471-299X.1000.
  6. G. P. Andreu, “Del Envejecimiento,” Rev Cubana Invest Biomed, vol. 22, no. 1, pp. 58–67, 2003.
  7. I. Cefac Brasil Bolzan et al., “Contribution of the cervical auscultation in clinical assessment of the oropharyngeal dysphagia,” Revista CEFAC, vol. 15, no. 2, pp. 455–465, 2013, [Online]. Available: http://www.redalyc.org/articulo.oa?id=169326445023
  8. I. Marchesan, “Deglución — Diagnóstico y Posibilidades Terapéuticas,” Espacio logopedico, pp. 1–12, 2002, [Online]. Available: https://s3.amazonaws.com/academia.edu.documents/34860642/deglucion.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1509723251&Signature=%2BUvBMiXkcg84moKyDMSSH1Or7LU%3D&response-content-disposition=inline%3B filename%3DDeglucion.pdf
  9. J. M. Dudik, I. Jestrović, B. Luan, J. L. Coyle, and E. Sejdić, “A comparative analysis of swallowing accelerometry and sounds during saliva swallows,” BioMedical Engineering Online, vol. 14, no. 1, pp. 1–15, 2015, doi: 10.1186/1475-925X-14-3.
  10. J. Pablo and R. Uribe, “Automatic swallowing analysis based on accelerometry and surface electromyography,” 2021.
  11. L. J. Lazareck and Z. M. K. Moussavi, “Classification of normal and dysphagic swallows by acoustical means,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 12, pp. 2103–2112, 2004, doi: 10.1109/TBME.2004.836504.
  12. O. Ortega, A. Martín, and P. Clavé, “Diagnosis and Management of Oropharyngeal Dysphagia Among Older Persons, State of the Art,” Journal of the American Medical Directors Association, vol. 18, no. 7, pp. 576–582, 2017, doi: 10.1016/j.jamda.2017.02.015.
  13. Q. He et al., “The Association of High Resolution Cervical Auscultation Signal Features With Hyoid Bone Displacement During Swallowing,” IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, vol. 27, no. 9, pp. 1810–1816, 2019, doi: 10.1109/TNSRE.2019.2935302.
  14. S. B. Leder, C. T. Sasaki, and M. I. Burrell, “Fiberoptic endoscopic evaluation of dysphagia to identify silent aspiration,” Dysphagia, vol. 13, no. 1, pp. 19–21, 1998, doi: 10.1007/PL00009544.
  15. S. Roldan-Vasco, S. Restrepo-Agudelo, Y. Valencia-Martinez, and A. Orozco-Duque, “Automatic detection of oral and pharyngeal phases in swallowing using classification algorithms and multichannel EMG,” Journal of Electromyography and Kinesiology, vol. 43, no. October, pp. 193–200, 2018, doi: 10.1016/j.jelekin.2018.10.004.
  16. T. Warnecke et al., “Levodopa responsiveness of dysphagia in advanced Parkinson’s disease and reliability testing of the FEES-Levodopa-test,” Parkinsonism and Related Disorders, vol. 28, pp. 100–106, 2016, doi: 10.1016/j.parkreldis.2016.04.034.
  17. Y. Khalifa, C. Donohue, J. L. Coyle, and E. Sejdic, “Upper Esophageal Sphincter Opening Segmentation with Convolutional Recurrent Neural Networks in High Resolution Cervical Auscultation,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 2, pp. 493–503, 2021, doi: 10.1109/JBHI.2020.3000057.
  18. Y. Khalifa, J. L. Coyle, and E. Sejdić, “Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings,” Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020, doi: 10.1038/s41598-020-65492-1.
  19. Y. Sánchez-Cardona, A. Orozco-Duque, and S. Roldán-Vasco, “Characterization and classification of cervical auscultation signals acquired with stethoscope for automatic detection of swallowing sound,” Revista Mexicana de Ingenieria Biomedica, vol. 39, no. 2, pp. 205–216, 2018, doi: 10.17488/RMIB.39.2.6.
  20. S. Miyagi, S. Sugiyama, K. Kozawa, S. Moritani, S. I. Sakamoto, and O. Sakai, “Classifying dysphagic swallowing sounds with support vector machines,” Healthcare (Switzerland), vol. 8, no. 2, pp. 1–12, 2020, doi: 10.3390/healthcare8020103.