Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of the use of drinking water treatment plants sludges in the preparation of adobe as a sustainable construction material

Evaluación del aprovechamiento de lodos de plantas de tratamiento de agua potable en la preparación de adobe como material de construcción sostenible Evaluation of the use of drinking water treatment plants sludges in the preparation of adobe as a sustainable construction material


Ensayo termogravimétrico para el Lodo Aluminoso
Open | Download


Section
Articles

How to Cite
Evaluation of the use of drinking water treatment plants sludges in the preparation of adobe as a sustainable construction material: Evaluation of the use of drinking water treatment plants sludges in the preparation of adobe as a sustainable construction material. (2023). Revista EIA, 20(39), 3921 pp. 1-18. https://doi.org/10.24050/reia.v20i39.1594

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Patricia Torres Lozada,

Proesora Titular Facultad de Ingenieria Universidad del Valle

Inv. Senior Colciencias

Directora Grupo de Investigación Estudio y Control de la Contaminación Ambiental - ECCA


Adobe is a low-cost building material, widely used in different regions of the world. This study evaluated the potential recovery of sludge from a conventional drinking water treatment plant (DWTP) that uses aluminum sulfate as a coagulant, as a partial replacement of the soil (the main component of adobe).

The experimental stages were i. characterization of lime stabilized sludge (thermogravimetric analysis, pH, real density and electrical conductivity) and soil (determination of the plasticity index - PI, liquid and plastic limits and X-ray diffraction-DRx) and in two aggregation conditions (soil coarse and ground); ii. production and characterization of adobe blocks (29x15x10 cm3), placed under shade (28 days of curing) and dried to constant weight, considering a humidity lower than 40% and proportions in weight soil:stabilized sludge:portland-OPC cement defined by the Response Surface Methodology (stabilized sludge: 0.0 - 36.4% and OPC: 0.0 - 9.1%) and iii. comparison of compressive strength (MPa: study response variable).

The sludge showed silicoaluminous nature (65.14% non-volatile matter: SiO2, Al2O3 and Fe2O3 in the form of quartz, kaolinite, gibbsite and goethite), pH 6.34 units, real density 2.5 g/mL and conductivity 0.62 μs/cm. The IP (≤7.0) classifies the aluminous sludge as not very plastic and partially cohesive material. The ground soil showed greater potential for using the sludge (ground soil: OPC: mud 54.5: 9.1: 36.4 vs coarse soil: OPC: mud 90.9: 9.1: 0.0) with resistance to compression of 6.01 and 2.10 MPa respectively.

These results demonstrate the viability of valorization of DWTP aluminous sludge stabilized with lime and ground for adobe production, contributing to a more sustainable and environmentally friendly production by reducing the use of materials such as soil.


Article visits 500 | PDF visits 217


Downloads

Download data is not yet available.
  1. Al-Mukhtar, M., Khattab, S. & Alcover, J. F. (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, vol. 139, pp. 17-27. DOI: 10.1016/j.enggeo.2012.04.004
  2. Álvarez Ramírez R., Montes García P., Martínez Reyes J., Altamirano Juárez D, C. & Gochi Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Material, vol. 34, pp. 296–30. DOI: 10.1016/j.conbuildmat.2012.02.072
  3. Andreoli, C. V., Ferreira, A. C., Cherubini, C., Rodrigues, C., Carneiro, C. & Fernandes, F. (2001). Higienizacáo do lodo de esgoto. Aproveitamento do lodo gerado em estações de tratamento de água e esgotos sanitários, inclusive com a utilização de técnicas consorciadas com resíduos sólidos urbanos (87-117). Brasil: Abes – Prosab.
  4. Anggraini, V., Asadi, A., Huat Bujang, B.K. & Nahazanan, H. (2015). Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement, vol. 59, pp. 372–381. DOI:10.1016/j.measurement.2014.09.059
  5. Annual Book of ASTM Standards. ASTM, 5080. (2000). Standard Test Method for Apparent Density. American Society for Testing and Materials.
  6. Arango Ocampo, N., & Trujillo Velásquez, J. (2014). Análisis comparativo del ciclo de vida del bloque de suelo cemento (BSC) vs el bloque de concreto tradicional, Tesis Doctoral, Escuela de ingeniera, Universidad EIA, Colombia.
  7. Babatunde, A. O. & Zhao, Y. Q. Constructive approaches towards water treatment works sludge management : an international review of beneficial re-uses. (2007) Critical Reviews in Environmental Science and Technology., vol. 37, no. 2, pp. 129-164. DOI: 10.1080/10643380600776239
  8. Barba, A. Materias Primas para la Fabricación de Soportes de Baldosas Cerámicas. (1997). Instituto de Tecnología Cerámica, pág 291. Instituto de Tecnología Cerámica.
  9. Barrios, G., Alvarez, L., Arcos, H., Marchant, E. & Rosi, D. (1986). Comportamiento de los suelos para la confección de adobes. Informes de la Construcción, vol. 37, no. 377, pp. 43-49.
  10. Carretero León, M. I. & Pozo Rodriguez, M. (2007). Mineralogía aplicada, salud y medio ambiente, Madrid, España: Editorial Paraninfo, pág 407.
  11. Cerón, O., Millán, S., Espejel, F., Rodríguez, A. & Ramírez, R. M. (2006). Aplicación de lodos de plantaspotabilizadoras para elaborar materiales de construcción. México: Univesidad NacionalAutónoma de México, Instituto de Ingeniería Ambiental, pp. 1-11.
  12. Chen, L. & Lin, D.-F. (2009). Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. Journal of Hazardous Materials, vol. 162, no. 1, 321-327. DOI : 10.1016/j.enggeo.2010.12.002
  13. Januário, G. F. & Ferreira Filho, S. S. (2007). Planejamento e aspectos ambientais envolvidos na disposição final de lodos das estações de tratamento de água da região metropolitana de São Paulo. Engenharia Sanitaria e Ambiental, vol. 12, no. 2, pp. 117-126.
  14. Gang, Z., Ting-lin, H., Zhan-peng, L., & Chi, T. (2010). Full scale evaluation on ferric flocs sludge treatment with pelleting flocculation blanket process. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering, vol. 1, pp. 193-196. DOI: 10.1109/CESCE.2010.129
  15. Goodary R., Lecomte Nana G.L., Petit C. & Smith D.S. (2012). Investigation of the strength development in cement-stabilised soils of volcanic origin. Construction and Building Materials, vol. 28, no. 1, pp. 592-598. DOI: 10.1016/j.conbuildmat.2011.08.054
  16. Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y. & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, vol. 24, pp. 2011–2021. DOI: 10.1016/j.conbuildmat.2010.03.011
  17. Instituto Colombiano de Normas Técnicas y Certificación. (2004). Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Métodos de ensayo. Condiciones de entrega. NTC 5324.Bogotá: ICONTEC. pp. 1-42.
  18. Instituto de Hidrología Meteorología y Estudios Ambientales, & Ministerio de Ambiente Vivienda y Desarrollo Territorial - IDEAM. (2007). Resolución No. 0062. Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país. Bogotá D.C:: Los autores.
  19. Le Runigo, B., Ferber, V., Cui, Y. J., Cuisinier, O. & Deneele, D. (2011). Performance of lime-treated silty soil under long-term hydraulic conditions. Engineering Geology, vol. 118, no. 1, pp. 20-28.
  20. Lee, D.-J., Tay, J.-H., Hung, Y.-T. & He, P. (2005). Introduction to Sludge Treatment. En L. Wang, Y.-T. Hung & N. Shammas (Eds.), Physicochemical Treatment Processes Humana Press. Tomo. 3, pp. 677-703.
  21. Martínez Córdova, M. V. (2012). Estudio para el tratamiento, manejo y disposición final de lodos generados en plantas de tratamiento de agua potable. (Ingeniería Química Pregrado), Escuela Politécnica Nacional, Quito.
  22. Mejía, R. & Delvasto, S. (1998). Aprovechamiento de Lodo Aluminoso Generado en el Proceso de Potabilización del Agua. Cali: EMCALI EICE ESP - Universidad del Valle.
  23. Millogo, Y., Hajjaji, M., & Ouedraogo, R. Microstructure and physical properties of lime-clayey adobe bricks. (2008). Construction and Building Materials, vol. 22, pp. 2386–2392. DOI:10.1016/j.conbuildmat.2007.09.002
  24. Miqueleiz, L., Ramírez, F., Seco, A., Nidzam, R. M., Kinuthia, J. M., Tair, A. A. & Garcia, R. (2012). The use of stabilised Spanish clay soil for sustainable construction materials. Engineering Geology, vol. 133. pp. 9-15. DOI: 10.1016/j.enggeo.2012.02.010
  25. Norma Técnica Colombiana NTC 1522. Suelos. Ensayo para determinar la granulometría por tamizado.
  26. Ramírez, P. & Mendoza, A. (2008). Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo S. d. M. A. y. R. N. (SEMARNAT) (Ed.) La experiencia en México.
  27. Riveros, S. (2007). El uso masivo de la tierra como material de construcción. Apuntes Universidad Javeriana, vol. 20, no. 2, pp. 354-363.
  28. Rodríguez, M. A. & Saroza, B. (2006). Identificación de la composición óptima del adobe como material de construcción de una escuela en Cuba. Materiales de Construcción, vol. 56, no. 282, pp. 53-62.
  29. Sampedro Rodríguez, A. & Gallego Medina, J. (2004). De cal y carreteras. Revista técnica de la Asociación Española de la Carretera, vol. 135, 6-21.
  30. Sistema Único de Información de Servicios Públicos - SUI. (2010). Reportes Sección Técnico Operativo-Plantas de potabilización. [En linea]. Disponible en: http://reportes.sui.gov.co/reportes/SUI_ReporteAcueducto.htm
  31. Spinosa, L. (2013). Characterization: a necessary tool in sludge management. Water Science and Technology., vol. 68, no. 4, pp. 748-755. DOI: 10.2166/wst.2013.338
  32. Torres, P., Hernández, D. & Paredes, D. (2012). Uso productivo de lodos de plantas de tratamiento de agua potable en la fabricación de ladrillos cerámicos. Revista Ingeniería de Construcción., vol. 27, no. 3, pp. 145-154. DOI: 10.4067/S0718-50732012000300003
  33. Torres, J., Mejía de Gutiérrez, R., Castelló, R. & Vizcayno, C. (2011). Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolín. Revista Latinoamericana de Metalurgia y Materiales, vol. 1, no. 31, 35 – 43.
  34. Victoria, A. N. (2013). Characterisation and performance evaluation of water works sludge as bricks material. International
  35. Journal of Engineering, vol. 3, no. 3,p. 8269.
  36. Walsh, M. E., Lake, C. B., & Gagnon, G. A. (2008). Strategic pathways for the sustainable management of water treatment plant residuals. Journal of Environmental Engineering and Science, vol. 7, no. 1, 45-52. DOI:10.1139/S07-034
  37. Zhao, Y. Q., Zhao, X. H. & Babatunde, A. O. (2009). Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater: Long-term trial. Bioresource Technology, vol. 100, no. 2, pp. 644-648.
  38. Zuleta, G. (2011). La Arquitectura en Tierra: una Alternativa para la Construcción Sostenible. Revista Hábitat Sustentable, vol. 1, no. 1, pp. 35- 39.