VLC SYSTEM WITH EXTERNAL MODULATION
Sistema VLC con modulación externa: hacia las comunicaciones por luz solar TOWARDS SUNLIGHT COMMUNICATIONS


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
In this work we implemented a visible light communication system with external modulation through a $1.5 USD light valve, a logarithmic scale analog light sensor, a $5 USD Fresnel lens, a 12 V LED operating continuously, and 2 Raspberry Pi 3. This work is an initiative to directly exploit sunlight as a radiation source to complement VLC systems with a low implementation cost. The light valve allowed transmitting data at a rate of 100 bps which suggests an application scenario such as wireless sensor networks and in general for the Internet of Things (IoT). Since there is not much room in the radio spectrum to accommodate new wireless communication services and technologies, VLC systems promise to be a great complement to conventional wireless access networks to balance the traffic load present when there is a massive connection of devices in the IoT paradigm.
Article visits 372 | PDF visits 222
Downloads
- Chow, C. W.; Yeh, C. H.; Liu, Y. F.; Huang, P. Y. (2013). Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems. IEEE Photonics Journal, 5(1). https://doi.org/10.1109/JPHOT.2013.2238618
- Forrest, M. M. I. (1976). Alexander Graham Bell and the Invention of the Telephone. Proceedings of the Institution of Electrical Engineers, 123(12), pp. 1387–1388. https://doi.org/10.1049/piee.1976.0281
- Jackson, D. K.; Buffaloe, T. K.; Leeb, S. B. (1998). Fiat lux: A fluorescent lamp digital transceiver. IEEE Transactions on Industry Applications, 34(3), pp. 625–630. https://doi.org/10.1109/28.673734
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. (2015). LED Based Indoor Visible Light Communications: State of the Art. IEEE Communications Surveys & Tutorials, 17(3), pp.1649–1678. https://doi.org/10.1109/COMST.2015.2417576
- Martínez Ciro, R. A.; López Giraldo, F. E.; Betancur Perez, A. F. (2016). RGB Sensor Frequency Response for a Visible Light Communication System. IEEE Latin America Transactions,14(12), pp. 4688–4692. https://doi.org/10.1109/TLA.2016.7816998
- Navarro Restrepo, J. D.; Rojas Úsuga, J.; Martínez Ciro, R.; Betancur Pérez, A.; López Giraldo, F. (2020). Caracterización de un conversor de luz a frecuencia TSL235R-LF, para su aplicación en un sistema de comunicación por luz visible. Revista EIA, 17(34), pp. 1–7.https://doi.org/10.24050/reia.v17i34.1139
- Pang, G.; Kwan, T.; Chan, C. H. (1999). LED traffic light as a communications device. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 788–793. https://doi.org/10.1109/itsc.1999.821161
- Quintana Sánchez, C. (2013). Transmisión de datos por medio de sistemas VLC. Vector Plus, 38, pp. 34–41. http://acceda.ulpgc.es/handle/10553/11881
- Rehman, S. U.; Ullah, S.; Chong, P. H. J.; Yongchareon, S.; Komosny, D. (2019). Visible light communication: A system perspective—Overview and challenges. Sensors (Switzerland), 19(5), pp. 1–22. https://doi.org/10.3390/s19051153
- Standard, I., & Society, I. C. (2011). IEEE Standard for Local and metropolitan area networks — Audio Video Bridging (AVB) Systems IEEE Computer Society Sponsored by the (Issue September).
- Tanaka, Y.; Haruyama, S.; Nakagawa, M. (2000). Wireless optical trasnsmissions with white colored LED for wireless home links. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2, pp. 1325–1329. https://doi.org/10.1109/pimrc.2000.881634