Hydrogeochemical and isotopic evaluation of groundwater quality in the alluvial aquifer of the Rio Pavas valley, Colombia
Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Hydrogeochemical and isotopic methods were used to characterize the quality of groundwater (N=19) belonging to the alluvial aquifer of the Rio Pavas basin in Colombia, to evaluate its origin, renewability, spatial and temporal dynamics. The groundwater flows in a Southeast-Northwest direction, with freshwater characteristics (TSD < 500 mg/L; 5,55 ≤ pH ≤ 7,90) not recommended for human consumption as it exceeds the maximum acceptable microbiological values established by Colombian regulations. It presents Ca2+-Mg2+-HCO3- or Ca2+-Mg2+-Na+-HCO3-facies. The hydrogeochemistry modifying processes are rock dissolution and cation exchange. Stable isotopes indicate the groundwater is formed by meteoric water recharge without evidence of the evaporation effect. Tritium dating shows that groundwater is young water less than 20 years old
Article visits 941 | PDF visits 561
Downloads
- Al-khashman, O. A. (2005). Study of chemical composition in wet atmospheric precipitation in Eshidiya area, Jordan. Atmospheric Environment, 39, pp. 6175–6183. https://www.doi.org/10.1016/j.atmosenv.2005.06.056.
- Alcaldia de La Cumbre (2020) Plan de desarrollo municipal 2020 - 2023 “La Cumbre somos todos” [Online]. Disponible en: https://ogpt.valledelcauca.gov.co/storage/Clientes/ogpt/principal/imagenes/contenidos/2445-pdm la cumbre.pdf.
- Bridgewater, L.; American Public Health Association; American Water Works Association; Water Environment Federation. (2012). Standard Methods for the Examination of Water and Wastewater, editado por E. W. Rice et al.
- Asare, A.; Appiah-Adjei, E.K.; Ali, B.; Owusu-Nimo, F. (2021). Physico-chemical evaluation of groundwater along the coast of the Central Region, Ghana. Groundwater for Sustainable Development, 13. https://www.doi.org/10.1016/j.gsd.2021.100571.
- Cabrera, A.; Blarasin, M.; Maldonado, L. (2014). Cuadernos de estudios de aguas subterráneas: edad del agua subterránea, Argentina , Editado por Unirio editora. https://www.unrc.edu.ar/unrc/comunicacion/editorial/repositorio/978-987-688-106-7.pdf.
- Correa Basto, O. (2020). Modelo hidrogeológico conceptual de la cuenca del río pavas en la zona de influencia del proyecto vial mulaló – loboguerrero en el municipio de la Cumbre – Valle del Cauca, tesis (Maestría en hidrogeología ambiental), Colombia, Universidad Antonio Nariño, facultad de ingeniería ambiental. Disponible en: http://repositorio.uan.edu.co/handle/123456789/2179.
- Custodio, E.; Llamas, M. R. (1983). Hidrología Subterránea Tomo I. 2da ed, Barcelona, España, Ediciones Omega.
- Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), pp. 436–468. https://www.doi.org/10.3402/tellusa.v16i4.8993.
- Environmental Isotope Laboratory. (2022). Water Samples [Online]. Disponible en: https://uwaterloo.ca/environmental-isotope-laboratory/analytical-services/water-samples. Consultado: el 27 de enero de 2022.
- Escobar Delgado, F. A. (2017). Acciones colectivas de la veeduría ambiental mulaló – loboguerrero para la defensa del recurso hídrico en el corregimiento de Pavas, tesis, Colombia, Universidad del Valle, facultad de ciencias sociales y económicas. Disponible en: http://hdl.handle.net/10893/10140.
- Fritz, S. J. (1994). A Survey of Charge-Balance Errors on Published Analyses of Potable Ground and Surface Waters. Ground Water, 32(4), pp. 539–546. https://www.doi.org/10.1111/j.1745-6584.1994.tb00888.x.
- Gat, J. R.; Mook, W. G.; Meijer, H. A. J. (2001). Sección II. Agua Atmosférica. Isótopos Ambientales en el Ciclo Hidrológico: Principios y Aplicaciones. Vienna, p. 60, UNESCO – IAEA. Disponible en: http://www-naweb.iaea.org/napc/ih/IHS.
- Geyh, M. et al. (2001) Environmental Isotopes in the Hydrological Cycle Principles and Applications. Groundwater Saturated and Unsaturated Zone, UNESCO y IAEA. Vienna: UNESCO - IAEA.
- González, J. D.; Arboleda, C. A.; Botero, S. (2015). Social Infrastructure Development: The Case for Private Participation in Potable Water Supply in Colombia. PM World Journal, 4(10), pp. 1–15. https://www.researchgate.net/publication/277955149.
- Hem, J. (1985). Study and Interpretation of the Chemical Characteristicas of Natural Water. U.S Geological Survey Water, 2254, p. 264. Disponible en: http://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.
- IDEAM. (2015). Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. Escala 1:100.000. Periodo 2010 – 2012 [Online]. Disponible en: https://www.colombiaenmapas.gov.co/?e=-76.72593182729393,3.5648638999446645,-76.37711590932565,3.758445174465464,4686&b=igac&l=880&u=76377&t=32&servicio=880. Consultado: el 31 de enero de 2022.
- IDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá D.C. [Online]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf.
- Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130(1–3), pp. 347–364. https://www.doi.org/10.1007/s10661-006-9402-7.
- Jean-Eudes, O.; Avahounlin, R.; Kélomé, C.; Pierre, O.; Adéké, A.; Vissin, E. (2022). Evaluation of the Physico-Chemical Quality and Potability of Groundwater Consumption in Department of Collines at Benin. Journal of Geoscience and Environment Protection, 10(01), pp. 29–48. https://www.doi.org/10.4236/gep.2022.101003.
- Kattan, Z. (2018). Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer, Syria. Environmental Earth Sciences, 77(2), p. 45. https://www.doi.org/10.1007/s12665-017-7197-1.
- Kumar, M.; Kumari, K.; Ramanathan, A. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53(3), pp. 553–574. https://www.doi.org/10.1007/s00254-007-0672-3.
- Liu, J.; Wang, M.; Gao, Z. (2020). Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophysica, 68, pp. 877–889. https://www.doi.org/10.1007/s11600-020-00440-1.
- López Velandia, C. C. (2018). Análisis de las características fisicoquímicas del agua subterránea de la cuenca del río chicú, Colombia, usando indicadores hidroquímicos y estadística multivariante. Ingeniería y Ciencia, 14(28), pp. 35–68. https://www.doi.org/10.17230/ingciencia.14.28.2.
- Murray, K.; Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters. Water SA, 22(1), pp. 27–32. Disponible en: http://www.wrc.org.za/Lists/Knowledge Hub Items/Attachments/6719/1996_Jan_0926_abstract.pdf.
- Naranjo Henao, J. L. (2020). Modelo geológico detallado del acuífero del valle del río Pavas.
- OIEA y GNIP (2014). Guía para el muestreo de la precipitación OIEA/GNIP [Online]. Disponible en: http://www.iaea.org/water. Consultado: el 7 de abril de 2020.
- OMM y GNIR (2019). Sistema de isótopos de agua para análisis de datos, visualización y recuperación electrónica [Online]. Disponible en: https://nucleus.iaea.org/wiser/index.aspx. Consultado: el 11 de diciembre de 2019.
- Pimenta, R.; Rocha, Z.; Viana, J.; Gardini, G.; Duarte, M.; Moreira, R. (2017). Use of Environmental Tritium in Groundwater Dating in the Upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil. International Nuclear Atlantic Conference. Belo Horizonte, p. 9. Disponible en: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/015/49015755.pdf.
- Puertas Orozco, O. L.; Carvajal Escobar, Y.; Quintero Angel, M. (2011). Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia, DYNA (Colombia), 78(169), pp. 112–120.
- Rodríguez, C. O. (2004). Línea meteórica isotópica de Colombia, Meteorología Colombiana, (8), pp. 43–51.
- Sanford, R. F.; Pierson, C. T.; Crovelli, R. A. (1993). An objective replacement method for censored geochemical data. Mathematical Geology, 25(1), pp. 59–80. https://www.doi.org/10.1007/BF00890676.
- U.S. EPA. (1994). Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Cincinnati, Ohio [Online]. Disponible en: https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.7.pdf. Consultado: el 27 de enero de 2022.
- Valencia, J. (2013). Significado del exceso de deuterio en la interpretación de isótopos estables δ 18O y δ 2H en estudios hidrogeológicos. Informe científico tecnológico, 13, pp. 125–127.
- Valenzuela, L.; Ramírez-Hernández, J.; Palomares, R. B. (2013). Composición Isotópica del Agua Subterránea y su Relación con la Salinidad en el Valle de San Luis Río Colorado Sonora Mexico. Información Tecnológica, 24(2), pp. 57–66. https://www.doi.org/10.4067/S0718-07642013000200008.
- Vélez, M. V.; Rhenals, R. L. (2008). Determinación de la recarga con isótopos ambientales en los acuíferos de Santa Fé de Antioquia. Boletín Ciencias de la Tierra, (24), p. 18. Disponible en: https://revistas.unal.edu.co/index.php/rbct/article/view/9271/11078.
- Xiong, G.-Y.; Chen, G.-Q.; Xu, X.-Y.; Liu, W.-Q.; Fu, T.-F.; Khokiattiwong, S.; Kornkanitnan, N.; Ali Seddique, A.; Shi, X.-F.; Liu, S.-F.; Su, Q.; & Xu, X.-L. (2020). A comparative study on hydrochemical evolution and quality of groundwater in coastal areas of Thailand and Bangladesh. Journal of Asian Earth Sciences, 195 https://www.doi.org/10.1016/j.jseaes.2020.104336.
- Yidana, S. M.; Banoeng-Yakubo, B.; Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58(2), pp. 220–234. https://www.doi.org/10.1016/j.jafrearsci.2010.03.003.
- Yidana, S. M.; Yidana, A. (2009). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59(7), pp. 1461–1473. https://www.doi.org/10.1007/s12665-009-0132-3.
- Zhou, X.; Shen, Y.; Zhang, H. (2015). Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai, China. Journal of Ocean University of China, 14(3), pp. 475–483. https://www.doi.org/10.1007/s11802-015-2631-z.
- Zolekar, R.B.; Todmal, R.S.; Bhagat, V.S. (2021). Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environment, Development and Sustainability, 23(3), pp. 4433–4452. https://www.doi.org/10.1007/s10668-020-00782-2.