Skip to main navigation menu Skip to main content Skip to site footer

Alternatives for discharge and reuse of produced water from conventional and unconventional oil and gas reservoirs in Colombia

Alternativas de vertimiento y reúso de aguas de producción de yacimientos convencionales y no convencionales de crudo y gas en Colombia


 Origen y posibles destinos de las AP-YC para A) vertimiento o B) reúso.
Open | Download


Section
Articles

How to Cite
Alternatives for discharge and reuse of produced water from conventional and unconventional oil and gas reservoirs in Colombia. (2022). Revista EIA, 20(39), 3911 pp. 1-61. https://doi.org/10.24050/reia.v20i39.1620

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Produced water are the main waste from the exploitation of conventional and unconventional oil and gas reservoirs and must be treated and disposed of properly to avoid contamination of environmental matrices. However, Colombian environmental regulations related to alternatives for managing this produced water are scattered and have gaps. The objective of this review is to analyze the alternatives for discharge and reuse of produced water, established in the regulations and specialized literature, propose options to fill the regulatory gaps and present treatment technologies for these waters. The results of the review of the regulations show gaps related to the discharge of produced water into the air by total or partial evaporation in lagoons, as well as gaps and contradictions regarding the discharge of produced water into aquifers through injector wells. Regarding the review of specialized literature, the results show reuse options different from those considered in the regulations and two alternatives emerge as the most common: enhanced recovery in conventional reservoirs and hydraulic fracturing operations in unconventional reservoirs. Likewise, the specialized literature presents a wide availability of treatment technologies for produced water; however, their selection depends on their characteristics and the maximum permissible limits of contaminants according to the discharge and reuse alternative. As contributions, this review discusses the main problems associated with the disposal of produced water through injector wells, or its reuse in producer wells, which could cause contamination of aquifers and soils: loss of formation injectivity and corrosion of pipelines. Additionally, it proposes parameters for the characterization of formation waters and raw and treated production waters, together with possible compatibility tests in order to avoid the problems discussed.


Article visits 720 | PDF visits 361


Downloads

Download data is not yet available.
  1. Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28, pp. 222-239. https://doi.org/10.1016/j.jwpe.2019.02.001
  2. Aranguren-Campos, F.-A., Calderón-Carrillo, Z.; Usuriaga-Torres, J.-M. (2017). A selection methodology of flowback treatment technologies and water reuse in hydraulic fracturing in source rocks: A strategy to reduce the environmental impacts in Colombia. Ciencia, Tecnología y Futuro (CT&F), 7(1), pp. 5-30. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832017000200005&lng=en&tlng=en
  3. Bagheri, M.; Roshandel, R.; Shayegan, J. (2018). Optimal selection of an integrated produced water treatment system in the upstream of oil industry. Process Safety and Environmental Protection, 117, pp. 67-81. https://doi.org/10.1016/j.psep.2018.04.010
  4. Blauch, M.E. (2010). Developing effective and environmentally suitable fracturing fluids using hydraulic fracturing flowback waters. SPE-131784-MS, Society of Petroleum Engineers, SPE Unconventional Gas Conference, 23-25 February, Pittsburgh, Pennsylvania, USA. https://doi.org/10.2118/131784-MS
  5. Boschee, P. (2014). Produced and flowback water recycling and reuse: Economics, limitations, and technology. Oil and Gas Facilities, 3(1), pp. 16-22. http://www.spe.org/ogf/print/subscribers/2014/02/07_Feat_Unconventional.pdf
  6. Camarillo, M.K., Domen, J.K.; Stringfellow, W.T. (2016). Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. Journal of Environmental Management, 183(1), pp. 164-174. https://doi.org/10.1016/j.jenvman.2016.08.065
  7. Chang, H., Li, T., Liu, B., Vidic, R.D., Elimelech, M.; Crittenden, J.C. (2019). Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 455, pp. 34-57. https://doi.org/10.1016/j.desal.2019.01.001
  8. Chang, H., Liu, B., Yang, B., Yang, X., Guo, C., He, Q., Liang, S., Chen, S.; Yang, P. (2018). An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water. Separation and Purification Technology, 211, pp. 310-321. https://doi.org/10.1016/j.seppur.2018.09.081
  9. Collins, A.G.; Wright, C.C. (1985). Chapter 6: Enhanced oil recovery injection waters. Chilingarian G.V. (Advisory Editor). Developments in petroleum science. Elsevier Science Publishers, The Netherlands, pp. 151-221. https://doi.org/10.1016/S0376-7361(08)70568-5
  10. Coonrod, C.L., Yin, Y.B., Hanna, T., Atkinson, A., Alvarez, P.J.J., Tekavec, T.N., Reynolds, M.A.; Wong, M.S. (2020). Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 173, 115467. https://doi.org/10.1016/j.watres.2020.115467
  11. Dahm, K.; Chapman, M. (2014). Produced water treatment primer: Case studies of treatment applications. Science and Technology Program Report Research Project No. 1617. U.S. Department of the Interior, Bureau of Reclamation, USA, 70 p. http://www.usbr.gov/research/projects/download_product.cfm?id=1214
  12. Drewes, J., Cath, T., Debroux, J.; Veil, J. (2009). An integrated framework for treatment and management of produced water: Technical assessment of produced water treatment technologies. RPSEA Project 07122-12, Colorado School of Mines, Colorado, USA, 158 p. http://aqwatec.mines.edu/produced_water/treat/docs/Tech_Assessment_PW_Treatment_Tech.pdf
  13. Esmaeilirad, N., Terry, C., Kennedy, H., Prior, A.; Carlson, K. (2016). Recycling fracturing flowback water for use in hydraulic fracturing: Influence of organic matter on stability of carboxyl-methyl-cellulose-based fracturing fluids. Society of Petroleum Engineers Journal, 21(4). https://doi.org/10.2118/179723-PA
  14. Estrada, J.M.; Bhamidimarri, R. (2016). A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel, 182, pp. 292-303. https://doi.org/10.1016/j.fuel.2016.05.051
  15. Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S.; Abidin, Z.Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170, pp. 530-551. https://doi.org/10.1016/j.jhazmat.2009.05.044
  16. Fetter, C.W., Boving, T.; Kreamer, D. (2018). Contaminant hydrogeology. Third Edition. Waveland Press, USA, 647 p. ISBN-13: 978-1478632795.
  17. Gaudlip, A.W.; Paugh, L.O. (2008). Marcellus shale water management challenges in Pennsylvania. SPE-119898-MS, Society of Petroleum Engineers, SPE Shale Gas Production Conference, 16-18 November, Fort Worth, Texas, USA. https://doi.org/10.2118/119898-ms
  18. Guerra, K., Dahm, K.; Dundorf, S. (2011). Oil and gas produced water management and beneficial use in the western United States. Science and Technology Program Report No. 157. U.S. Department of the Interior, Bureau of Reclamation, USA, 113 p. https://www.usbr.gov/research/dwpr/reportpdfs/report157.pdf
  19. Hammer, R.; VanBriesen, J. (2012). In fracking’s wake: New rules are needed to protect our health and environment from contaminated wastewater. Technical Report D:12-05-A, Natural Resources Defense Council (NRDC), USA, 129 p. https://www.nrdc.org/sites/default/files/Fracking-Wastewater-FullReport.pdf
  20. Hayes, T.; Arthur, D. (2004). Overview of emerging produced water treatment technologies. 11th Annual International Petroleum Conference, 12-15 October, Albuquerque, New Mexico, USA.
  21. He, C., Zhang, T.; Vidic, R.D. (2016). Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing. Water Research, 104, pp. 425-431. https://doi.org/10.1016/j.watres.2016.08.030
  22. Igunnu, E.T.; Chen, G.Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9, pp. 157-177. https://doi.org/10.1093/ijlct/cts049
  23. Jiménez, S., Micó, M.M., Arnaldos, M., Medina, F.; Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, pp. 186-208. https://doi.org/10.1016/j.chemosphere.2017.10.139
  24. Kurz, B.A., Stepan, D.J., Harju, J.A., Stevens B.G.; Cowan, R.M. (2011). Bakken water opportunities assessment – Phase 2: Evaluation of brackish groundwater treatment for use in hydraulic fracturing of the Bakken play, North Dakota. Final Report 2011-EERC-12-05, Energy & Environmental Research Center (EERC), University of North Dakota, USA. https://undeerc.org/water/pdf/BakkenWaterOppPhase2.pdf
  25. Lester, Y., Ferrer, I., Thurman, E.M., Sitterley, K.A., Korak, J.A., Aiken, G.; Lindena, K.G. (2015). Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Science of the Total Environment, 512-513, pp. 637-644. https://doi.org/10.1016/j.scitotenv.2015.01.043
  26. Li, L.; Lee, R. (2009). Purification of produced water by ceramic membranes: Material screening, process design and economics. Separation Science and Technology, 44(15), pp. 3455-3484. https://doi.org/10.1080/01496390903253395
  27. Liden, T., Santos, I.C., Hildenbrand, Z.L.; Schug, K.A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, pp. 107-118. https://doi.org/10.1016/j.scitotenv.2018.05.386
  28. Liu, D., Li, J., Zou, C., Cui, H., Ni, Y., Liu, J., Wu, W., Zhang, L., Coyte, R., Kondash, A.; Vengosh, A. (2020). Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel, 272, 117621. https://doi.org/10.1016/j.fuel.2020.117621
  29. Luek, J.L.; Gonsior, M. (2017). Organic compounds in hydraulic fracturing fluids and wastewaters: A review. Water Research, 123, pp. 536-548. https://doi.org/10.1016/j.watres.2017.07.012
  30. MA (Ministerio de Agricultura). Decreto 1594 del 26 de junio de 1984. Ministerio de Agricultura, República de Colombia. Bogotá, 1984.
  31. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Decreto 050 del 16 de enero de 2018. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2018b.
  32. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Decreto 1076 del 26 de mayo de 2015. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2015b.
  33. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 1207 del 25 de julio de 2014. República de Colombia, Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, 2014a.
  34. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0421 del 20 de marzo de 2014. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2014b.
  35. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0631 del 17 de marzo de 2015. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2015a.
  36. MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0883 del 18 de marzo de 2018. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2018a.
  37. MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Resolución 909 del 5 de junio de 2008. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2008.
  38. MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Resolución 1543 del 6 de agosto de 2010. República de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2010a.
  39. MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Decreto 3930 del 25 de octubre de 2010. República de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2010b.
  40. MME (Ministerio de Minas y Energía). Resolución 180005 del 5 de enero de 2010. República de Colombia, Ministerio de Minas y Energía. Bogotá, 2010.
  41. MME (Ministerio de Minas y Energía). Resolución 90341 del 27 de marzo de 2014. República de Colombia, Ministerio de Minas y Energía. Bogotá, 2014.
  42. Mohammad-Pajooh, E., Weichgrebe, D., Cuff, G., Tosarkani, B.M.; Rosenwinkel, K.-H. (2018). On-site treatment of flowback and produced water from shale gas hydraulic fracturing: A review and economic evaluation. Chemosphere, 212, pp. 898-914. https://doi.org/10.1016/j.chemosphere.2018.08.145
  43. Neff, J., Lee, K.; DeBlois, E.M. (2011). Chapter 1. Produced water: Overview of composition, fates, and effects. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA. pp. 3-54. ISBN: 978-1-4614-0045-5. https://doi.org/10.1007/978-1-4614-0046-2
  44. Nicot, J.-P., Scanlon, B.R., Reedy, R.C.; Costley, R.A. (2014). Source and fate of hydraulic fracturing water in the Barnett shale: A historical perspective. Environmental Science & Technology, 48(4), pp. 2464-2471. https://doi.org/10.1021/es404050r
  45. Oetjen, K., Chan, K.E., Gulmark, K., Christensen, J.H., Blotevogel, J., Borch, T., Spear, J.R., Cath, T.Y.; Higgins, C.P. (2018). Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of the Total Environment, 619-620, pp. 654-664. https://doi.org/10.1016/j.scitotenv.2017.11.078
  46. Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, ID 2707989, 24 p. https://doi.org/10.1155/2016/2707989
  47. Shafer, L. (2011). Water recycling and purification in the Pinedale Anticline field: Results from the Anticline Disposal Project. SPE 141448-MS. Society of Petroleum Engineers, SPE Americas E&P Health, Safety, Security, and Environmental Conference, 21-23 March, Houston, Texas, USA. https://doi.org/10.2118/141448-MS
  48. Sharma, M.M.; Yen, T.F.; Chilingarian, G.V.; Donaldson, E.C. (1985). Chapter 7 Some chemical and physical problems in enhanced oil recovery operations. Chilingarian G.V. (Advisory Editor). Developments in petroleum science. Elsevier Science Publishers, The Netherlands, pp. 223-249. https://doi.org/10.1016/S0376-7361(08)70568-5
  49. Siagian, U., Widodo, S., Khoiruddin, K., Wardani, A.; Wenten, I.G. (2018). Oilfield produced water reuse and reinjection with membrane. MATEC Web of Conferences, 156, 08005. https://doi.org/10.1051/matecconf/201815608005
  50. Silva, T.L.S., Morales-Torres, S., Castro-Silva, S., Figueiredo, J.L.; Silva, A.M.T. (2017). An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water. Journal of Environmental Management, 200, pp. 511-529. https://doi.org/10.1016/j.jenvman.2017.06.002
  51. Stewart, M.; Arnold, K. (2011). Produced water treatment field manual. First Edition, Gulf Professional Publishing, USA, 244 p. e-ISBN: 978-1-856-17985-0.
  52. Stringfellow, W.T., Domen, J.K., Camarillo, M.K., Sandelin, W.L.; Borglin, S. (2014). Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. Journal of Hazardous Materials, 275, pp. 37-54. https://doi.org/10.1016/j.jhazmat.2014.04.040
  53. Sun, Y., Wang, D., Tsang, D.C.W., Wang, L., Ok, Y.S.; Feng, Y. (2019). A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environment International, 125, pp. 452-469. https://doi.org/10.1016/j.envint.2019.02.019
  54. Torres, L., Yadav, O.P.; Khan, E. (2016). A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, 539, pp. 478-493. https://doi.org/10.1016/j.scitotenv.2015.09.030
  55. U.S.-EPA (U.S. Environmental Protection Agency). (2015). Assessment of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources. External Review Draft EPA/600/R‐15/047a, U.S. Environmental Protection Agency, USA, 998 p. https://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=244651
  56. Veil, J., Puder, M., Elcock, D.; Jr. Redweik, R.J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. U.S. Department of Energy, USA, 87 p. https://publications.anl.gov/anlpubs/2004/02/49109.pdf
  57. Veil, J.A. (2011). Chapter 29. Produced water management options and technologies. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA, pp. 537-571. e-ISBN: 978-1-461-40046-2. https://doi.org/10.1007/978-1-4614-0046-2
  58. Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D.; Abad, J.D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009. http://doi.org/10.1126/science.1235009
  59. Yang, M. (2011). Chapter 2. Measurement of oil in produced water. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA, pp. 57-88. ISBN: 978-1-4614-0045-5. https://doi.org/10.1007/978-1-4614-0046-2
  60. Zhang, Y., Mao, J., Zhao, J., Yang, B.; Zhang, Z. (2019). Research on the reuse technology of fracturing flowback fluids in fracking. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1-7. https://doi.org/10.1080/15567036.2019.1604885