Skip to main navigation menu Skip to main content Skip to site footer

Analysis of characteristics influencing student dropout in the context of a latin american university

Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana



Open | Download


Section
Articles

How to Cite
Analysis of characteristics influencing student dropout in the context of a latin american university. (2023). Revista EIA, 20(40), 4002 pp. 1-28. https://doi.org/10.24050/reia.v20i40.1628

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Luis Fernando Castro Rojas,

ormación Académica
  •  
Doctorado UNIVERSIDAD NACIONAL DE COLOMBIA
DOCTORADO EN INGENIERIA DE SISTEMAS
Agostode2010 - Noviembrede 2015
  •  
Maestría/Magister UNIVERSIDAD DE LOS ANDES
Ingeniería de Sistemas y Computación
Agostode2010 - Abrilde 2013
  •  
Maestría/Magister UNIVERSIDAD TECNOLÓGICA DE PEREIRA
INSTRUMENTACION FISICA
Enerode2007 - Juniode 2009
  •  
Especialización UNIVERSIDAD TECNOLÓGICA DE PEREIRA
Especializacion En Instumentacion Fisica
Enerode2000 - Diciembrede 2001
  •  
Pregrado/Universitario Universidad Antonio Nariño, Armenia
Ingenieria de Sistemas
Enerode1991 - Enerode 1996

The present work aims to deepen the study of the student dropout, which is a serious problem that worries the governments, university institutions and students worldwide. To achieve the above, this study uses data mining to analyze student dropout in a Latin American university by discovering the most influential relevant characteristics and by identifying patterns to facilitate the understanding of such problem. The methodology used considers an adaptation of the steps proposed by KDD (knowledge discovery in databases) and the study design was observational, descriptive and cross-sectional, using convenience sampling. The sample is made up of 10705 students, which are distributed in 7 faculties and 33 undergraduate academic programs. A model based on decisióntree was used to verify the predictive relationships between the status of dropping out student and the influential characteristics. As a result, this work identified techniques and methods commonly used in these studies and developed a method to identify patterns of relationships among the most influential characteristics in the student dropout. We found that the main influencing characteristics in this study refer to socioeconomic level, gender, employment status and academic performance. One aspect to be highlighted is the coincidence of the findings of this study with the results of other similar studies worldwide, in which academic performance was identified as a fundamental factor that affects university dropout. As a conclusion we can state that university student dropout is caused by a set of characteristics and their interrelations rather than a single characteristic.


Article visits 955 | PDF visits 600


Downloads

Download data is not yet available.
  1. Ayala, E., López, R. & Menéndez, V. (2021). Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos. Revista de Educación a Distancia (RED), 21(66), 1-36. https://doi.org/10.6018/red.463561
  2. Bakhshinategh, B., Zaiane, O. R., Elatia, S., & Ipperciel, D. (2018). Educational data mining applications and tasks: a survey of the last 10 years. Education and Information Technologies, 23(1), 537–553. https://doi.org/10.1007/s10639-017-9616-z
  3. Castro, L. F., Espitia, E. & Cardona, S. (2019). Analysis of Student Desertion in a Systems and Computing Engineering Undergraduate Program. Revista Colombiana de Computación, 20(1), 72-82. https://doi.org/10.29375/25392115.3608
  4. Castro, L. F., Espitia, E. & Mantilla, A. (2018). Applying CRISP-DM in a KDD Process for the Analysis of Student Attrition.
  5. Communications in Computer and Information Science, 885, 386-401. https://doi.org/10.1007/978-3-319-98998-3_30
  6. Castrillón-Gómez, O. D., Sarache W., & Ruiz-Herrera, S. (2020). Predicción de las principales variables que conllevan al abandono estudiantil por medio de técnicas de minería de datos. Formación Universitaria, 13(6), 217-228. http://dx.doi.org/10.4067/S0718-50062020000600217
  7. Clerici, R., & Da Re, L. (2019). Evaluación de la eficacia de un programa de tutoría formativa. Revista de Investigación Educativa, 37(1), 39-56. http://dx.doi.org/10.6018/rie.37.1.322331
  8. Constante, A., Florenciano, E., Navarro, E. & Fernández, M. (2021). Factores asociados al abandono universitario. Educación XX1, 24(1), 17-44. http://doi.org/10.5944/educXX1.26889
  9. Cuji, B., Gavilanes, W., & Sánchez, R. (2017). Modelo predictivo de deserción estudiantil basado en arboles de decisión. Espacios, 38(55), 19-25. https://www.revistaespacios.com/a17v38n55/a17v38n55p17.pdf
  10. Ghazal, M. & Hammad, A. (2022) Application of knowledge discovery in database (KDD) techniques in cost overrun of construction projects. International Journal of Construction Management, 22(9), 1632-1646. https://doi.org/10.1080/15623599.2020.1738205.
  11. Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of Various Decision Tree Algorithms for Classification in
  12. Data Mining. International Journal of Computer Applications, 163(8), 15-19. https://doi.org/10.5120/ijca2017913660
  13. Hatos, A., Coloja, R. & Sava, A. (2020). Assessing Situational Awareness of Universities Concerning Student Dropout: A Web-Based Content Analysis of Romanian Universities’ Agenda. Journal of Research in Higher Education, 4 (2), 18-34. https://doi.org/10.24193/JRHE.2020.2.2
  14. Hernández, R., Fernández, C., & Baptista, M. (2014). Metodología de la Investigación. McGraw Hill Educación.
  15. Kumar, M., Singh, A. J., & Handa, D. (2017). Literature Survey on Student’s Performance Prediction in Education using Data Mining Techniques. International Journal of Education and Management Engineering, 6, 40-49. https://doi.org/10.5815/ijeme.2017.06.05
  16. Ministerio de Educación Nacional. (2021). Estadísticas de deserción y permanencia en educación superior, históricos indicadores 2010-2018. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles-357549_recurso_7.pdf
  17. Munizaga, F., Cifuentes, M., & Beltrán, A. (2018). Retención y abandono estudiantil en la Educación Superior Universitaria en América Latina y el Caribe: Una revisión sistemática. Archivos Analíticos de Políticas Educativas, 26(61), 1-36. http://dx.doi.org/10.14507/epaa.26.3348
  18. Oficina Europea de Estadística. (2020). Early leavers from education and training. [Mensaje en un blog]. Blog Eurostat. https://ec.europa.eu/eurostat/statistics-explained/index.php/Early_leavers_from_education_and_training#Overview
  19. Oñate, A. A. (2016). Análisis de la Deserción y Permanencia Académica en la Educación Superior Aplicando Minería de datos. [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional. https://repositorio.unal.edu.co/handle/unal/57387
  20. Pando, A. & Zarate, W. (2020). Aplicación de un modelo de minería de datos para identificación de patrones que influyen en la deserción académica en el instituto superior Leonardo Davinci. [Trabajo de grado, Universidad Privada Antenor Orrego]. Repositorio de Tesis UPAO. https://hdl.handle.net/20.500.12759/7033
  21. Proyecto ALFA-GUIA. (2013). Marco Conceptual sobre el Abandono. https://documentop.com/marco-conceptual-abandono-proyecto-alfa-guia_59fbf0b21723dda8a11794fa.html.
  22. Quiñones, L., Jara, D., Alvarado, N., Milla, M. & Gamarra, O. (2020). Modelo para la estimación de la deserción estudiantil Awajún y Wampis empleando minería de datos. RECyT, 34, 45–50. https://doi.org/10.36995/j.recyt.2020.34.006
  23. Ramírez, P., & Grandón, E. (2018). Predicción de la deserción académica en una universidad pública chilena a través de la clasificación basada en árboles de decisión con parámetros optimizados. Formación Universitaria, 11(3), 3–10. http://dx.doi.org/10.4067/S0718-50062018000300003
  24. Ramírez, V. (2021). Deserción estudiantil y el costo económico en universidades chilenas. [Tesis de Maestría, Universidad del Bio-Bio]. Repositorio digital Universidad del Bio-Bio. http://repobib.ubiobio.cl/jspui/handle/123456789/3609
  25. Sharma, H., & Kumar, S. (2016). A Survey on Decision Tree Algorithms of Classification in Data Mining. International Journal of Science and Research, 5 (4), 2094-2097. https://doi.org/10.21275/v5i4.NOV162954
  26. Urbina-Nájera, A. B., Camino-Hampshire, J. C., & Cruz-Barbosa, R. (2020). Deserción escolar universitaria: Patrones para prevenirla aplicando minería de datos educativa. RELIEVE, 26(1), 1-21. http://doi.org/10.7203/relieve.26.1.16061
  27. Vásquez, J. (2016). Modelo predictivo para estimar la deserción de estudiantes en una Institución de Educación Superior. [Tesis de Maestría, Universidad de Chile]. Repositorio Académico de la Universidad de Chile. http://repositorio.uchile.cl/handle/2250/144169
  28. Vicente, V. X. (2020). Aplicación de la técnica de minería de datos para la predicción de la deserción estudiantil universitaria. [Trabajo de grado, Universidad Técnica de Ambato]. Repositorio Universidad Técnica de Ambato. https://repositorio.uta.edu.ec/jspui/bitstream/123456789/30892/1/Victor%20Xavier%20Vicente%20Guerrero..pdf
  29. Vila, D. (2019). Detección de patrones de deserción estudiantil utilizando técnicas predictivas de clasificación y regresión de minería de datos. [Trabajo de grado, Universidad Técnica del Norte]. Repositorio Digital Universidad Técnica del Norte.
  30. http://repositorio.utn.edu.ec/handle/123456789/9095
  31. Villalobos, L. R. (2017). Enfoques y diseños de investigación social: cuantitativos, cualitativos y mixtos. EUNED.