Biochar: State-of-the-art advances and perspectives for soil management
Biocarbón: Estado del arte, avances y perspectivas en el manejo del suelo


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Biochar generated from the pyrolysis of organic materials reduces GHG emissions and impacts the soil's many other physical, chemical, and biological properties.
This paper aims to show a systematic review of online databases about the progress and trends of knowledge in biochar, an important topic that contributes to the updating, synthesis, and dissemination of knowledge and allows classifying the growing flow of information and identifying accredited aspects from 2011 to 2022.
From 2011 to 2022, 253 scientific articles were collected and 119 were selected. Co-occurrence networks were worked on, and the information was represented through graphs to visualize the total number of connections between entities, grouping (subdomains), and locating synonyms, among others. One of the selection criteria was the type of publication and the synopsis of the study of the effect of biochar on soil, environmental importance, and use in the agricultural sector, as well as the methodological approaches of the research process and implementation feasibility.
The results showed a notable increase in research on the subject in recent years, with reports of effectiveness, as a soil conditioner and remediator, GHG mitigation, and a trend for water and soil decontamination with positive progress of new research. However, it is necessary to monitor the effects of the application of biochar in the medium and long term to originate cleaner production processes in the agricultural sector.
Article visits 524 | PDF visits 475
Downloads
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-Ur-Rehman, M; Qayyum M. F.; Ok, Y. S.; Murtaza, G. (2018). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680. https://doi.org/10.1007/s11356-017-8987-4
- Abideen, Z.; Koyro, H. W.; Huchzermeyer, B.; Gul, B.; Khan, M. A. (2020). Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere, 30(4), 466–477. https://doi.org/10.1016/S1002-0160(17)60362-X
- Adejumo, S. A.; Owoseni, O.; Mur, L. A. J. (2021). Low light intensity and compost modified biochar enhanced maize growth on contaminated soil and minimized Pb induced oxidative stress. Journal of Environmental Chemical Engineering, 9(2), 104764. https://doi.org/10.1016/j.jece.2020.104764
- Adusu, D.; Abugre, S.; Dei-Kusi, D. (2021). Potential of biochar for minesoil amendment and floristic diversity enhancement at the yongwa quarry site in the eastern region of ghana. Agricultural Science Digest, 41(1), 61–65. https://doi.org/10.18805/ag.D-254
- Agbede, T. M.; Adekiya, A. O. (2020). Influence of biochar on soil physicochemical properties, erosion potential, and maize (Zea mays L.) grain yield under sandy soil condition. Communications in Soil Science and Plant Analysis, 51(20), 2559-2568. https://doi.org/10.1080/00103624.2020.1845348
- Agbede, T. M.; Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7, 100051. https://doi.org/10.1016/j.resenv.2022.100051
- Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. (2018). Reclamation of saline-sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability, 10(9), 3083. https://doi.org/10.3390/su10093083
- Ali, I.; Ullah, S.; He, L.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Ali, N.; Bo, Y.; Adnan, M.; Amanullah; Jiang, L. (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ, 8, e10311. https://doi.org/10.7717/peerj.10311
- Ali, K.; Arif, M.; Jan, M. T.; Khan, M. J.; Jones, D. L. (2015). Integrated use of biochar: A tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern. Pakistan Journal of Botany, 47(1), 233–240.
- Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M. F.; Riba, M.; Alcañiz, J. M. (2019). Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Science of the total environment, 660, 1522-1532. https://doi.org/10.1016/j.scitotenv.2019.01.101
- Are, K. S.; Adelana, A. O.; Fademi, I. O.; Aina, O. A. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454–462. https://doi.org/10.1016/j.anres.2018.03.009
- Aziz, H.; Wang, X.; Murtaza, G.; Ashar, A.; Hussain, S.; Abid, M.; Murtaza, B.; Saleem, M. H.; Fiaz, S.; Ali, S. (2021). Evaluation of compost and biochar to mitigate chlorpyrifos pollution in soil and their effect on soil enzyme dynamics. Sustainability, 13(17), 9695. https://doi.org/10.3390/su13179695
- Bai, X.; Fernandez, I. J.; Spencer, C. J. (2022). Chemical Response of Soils to Traditional and Industrial Byproduct Wood Biochars. Communications in Soil Science and Plant Analysis, 53(6), 737–751. https://doi.org/10.1080/00103624.2022.2028812
- Bashagaluke, J. B.; Logah, V.; Opoku, A.; Tuffour, H. O.; Sarkodie-Addo, J.; Quansah, C. (2019). Soil loss and run-off characteristics under different soil amendments and cropping systems in the semi-deciduous forest zone of Ghana. Soil Use and Management, 35(4), 617–629. https://doi.org/10.1111/sum.12531
- Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Labaz, B.; Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496. https://doi.org/10.3390/agronomy10040496
- Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U. U.; Yu, S.; Zhao, L.; Li, D.; Li, D.; Xu, X. (2021). Composted biochar affects structural dynamics, function and co-occurrence network patterns of fungi community. Science of the Total Environment, 775:145672. https://doi.org/10.1016/j.scitotenv.2021.145672
- Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F. (2017). Nutrient leaching and retention in riparian soils as influenced by rice husk biochar addition. Soil Science, 182(7), 241–247. https://doi.org/10.1097/SS.0000000000000217
- Chávez-Garcia, E.; Siebe, C. (2019). Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments. Soil and Tillage Research, 189, 176–188. https://doi.org/10.1016/j.still.2019.01.003
- Chen, D.; Liu, W.; Wang, Y.; Lu, P. (2022). Effect of biochar aging on the adsorption and stabilization of Pb in soil. Journal of Soils and Sediments, 22(1), 56-66. https://doi.org/10.1007/s11368-021-03059-x
- Cruz-Méndez, A. S.; Ortega-Ramírez, E.; Lucho-Constantino, C. A.; Arce-Cervantes, O.; Vázquez-Rodríguez, G. A.; Coronel-Olivares, C.; Beltrán-Hernández, I. (2021). Bamboo biochar and a nopal-based biofertilizer as improvers of alkaline soils with low buffer capacity. Applied Sciences, 11(14), 6502. https://doi.org/10.3390/app11146502
- Cruz-O’byrne, R.; Casallas-Useche, C.; Piraneque-Gambasica, N.; Aguirre-Forero, S. (2021). Knowledge Landscape of Starter Cultures: A Bibliometric and Patentometric Study. Recent Patents on Biotechnology, 15(3), 232–246. https://doi.org/10.2174/1872208315666210928115503
- Cui, Q.; Xia, J.; Peng, L.; Zhao, X.; Qu, F. (2022). Positive Effects on Alfalfa Productivity and Soil Nutrient Status in Coastal Wetlands Driven by Biochar and Microorganisms Mixtures. Frontiers in Ecology and Evolution, 9, 798520. https://doi.org/10.3389/fevo.2021.798520
- De la Rosa, J. M.; Santa‐Olalla, A.; Campos, P.; López‐Núñez, R.; González‐Pérez; J. A.; Almendros, G.; Knicker, H. E.; Sánchez‐Martín, Á.; Fernández‐Boy, E. (2022). Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element‐Contaminated Soil. International Journal of Environmental Research and Public Health, 19(4), 2140. https://doi.org/10.3390/ijerph19042140
- Delaye, L. A. M.; Ullé, J. Á.; Andriulo, A. E. (2020). Biochar application in a degraded soil under sweet-potato production. Effect on edaphic properties. Ciencia del Suelo, 38(1), 162–173.
- Dong, X.; Zhang, Z.; Wang, S.; Shen, Z.; Cheng, X.; Lv, X.; Pu, X. (2022). Soil properties, root morphology and physiological responses to cotton stalk biochar addition in two continuous cropping cotton field soils from Xinjiang, China. PeerJ, 10, e12928. https://doi.org/10.7717/peerj.12928
- Espinosa, N. J.; Moore, D. J. P.; Rasmussen, C.; Fehmi, J. S.; Gallery, R. E. (2020). Woodchip and biochar amendments differentially influence microbial responses, but do not enhance plant recovery in disturbed semiarid soils. Restoration
- Ecology, 28, S381–S392. https://doi.org/10.1111/rec.13165
- Fang, B.; Lee, X.; Zhang, J.; Li, Y.; Zhang, L.; Cheng, J.; Wang, B.; Cheng, H. (2016). Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area, Southwest China. Soil Science and Plant Nutrition, 62(5–6), 526–533. https://doi.org/10.1080/00380768.2016.1202734
- Fang, W.; Wang, Q.; Han, D.; Liu, P.; Huang, B.; Yan, D.; Ouyang, C.; Li, Y.; Cao, A. (2016). The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Science of the Total Environment, 565, 339–345. https://doi.org/10.1016/j.scitotenv.2016.04.166
- Fonseca, A. A. D.; Santos, D. A.; Moura-Junior, C. D.; Passos, R. R.; Rangel, O. J. P. (2021). Phosphorus and Potassium in Aggregates of Degraded Soils: Changes Caused by Biochar Application. Clean - Soil, Air, Water, 49(12), 2000366. https://doi.org/10.1002/clen.202000366
- Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E. F.; Marcet, P.; Asensio, V. (2018). Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. Environmental Monitoring and Assessment, 190(10), 1-12. https://doi.org/10.1007/s10661-018-6997-4
- Glaser, B.; Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta, 82, 39-51. https://doi.org/10.1016/j.gca.2010.11.029
- Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. (2022). Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. GCB Bioenergy, 14(4), 481–495. https://doi.org/10.1111/gcbb.12926
- Hansen, V.; Müller-Stöver, D.; Munkholm, L. J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma, 269, 99–107. https://doi.org/10.1016/j.geoderma.2016.01.033
- Horák, J.; Kotuš, T.; Toková, L.; Aydin, E.; Igaz, D.; Šimanský, V. (2021). A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy, 11(3), 582. https://doi.org/10.3390/agronomy11030582
- Huang, S.; Bao, J.; Shan, M.; Qin, H.; Wang, H.; Yu, X.; Chen, J.; Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211, 120–127. https://doi.org/10.1016/j.chemosphere.2018.07.133
- Jegajeevagan, K.; Mabilde, L.; Gebremikael, M. T.; Ameloot, N.; De Neve, S.; Leinweber, P.; Sleutel, S. (2016). Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass and Bioenergy, 84, 1–11. https://doi.org/10.1016/j.biombioe.2015.10.025
- Ji, X.; Wan, J.; Wang, X.; Peng, C.; Wang, G.; Liang, W.; Zhang, W. (2022). Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: effects and mechanisms. Science of The Total Environment, 811, 152112. https://doi.org/10.1016/j.scitotenv.2021.152112
- Jiang, Y.; Kang, Y.; Han, C.; Zhu; Deng, H.; Xie, Z.; Zhong, W. (2020). Biochar amendment in reductive soil disinfestation process improved remediation effect and reduced N2O emission in a nitrate-riched degraded soil. Archives of Agronomy and Soil Science, 66(7), 983–991. https://doi.org/10.1080/03650340.2019.1650171
- Jien, S. H.; Chiang, J. L.; Wang, C. S.; Chang, H. J. (2012). Effects of application of biochar on soil fertility of acid red soils. Journal of Taiwan Agricultural Engineering, 58(4), 15–22.
- Jien, S. H.; Kuo, Y. L.; Liao, C. S.; Wu, Y. T.; Igalavithana, A. D.; Tsang, D. C. W.; Ok, Y. S. (2021). Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environmental Pollution, 272, 116009. https://doi.org/10.1016/j.envpol.2020.116009
- Jun, W.; Yu, S.; Ziyuan, L.; Cheng, H.; Zubin, X.; Wenhui, Z. (2016). Effects of biochar application on N2O emission in degraded vegetable soil and in remediation process of the soil. Acta Pedologica Sinica, 53(3), 713–723. https://doi.org/10.11766/trxb201509170443
- Jyoti, B. M.; Bordoloi, S.; Kumar, H.; Gogoi, N.; Zhu, H. H.; Sarmah, A. K.; Sreeja, P.; Sreedeep, S.; Mei, G. (2021). Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. International Journal of Damage Mechanics, 30(4), 484–501. https://doi.org/10.1177/1056789520925524
- Karim, A. A.; Kumar, M.; Mohapatra, S.; Singh, S.; K. (2019). Nutrient rich biomass and effluent sludge wastes co-utilization for production of biochar fertilizer through different thermal treatments. Journal of Cleaner Production, 228, 570–579. https://doi.org/10.1016/j.jclepro.2019.04.330
- Karim, M. R.; Halim, M. A.; Gale, N. V.; Thomas, S. C. (2020). Biochar effects on soil physiochemical properties in degraded managed ecosystems in northeastern Bangladesh. Soil Systems, 4(4), 1–17. https://doi.org/10.3390/soilsystems4040069
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A. I.; Meshesha, D. T.; Adgo, E.; Fenta, A. A.; Ebabu, K.; Masunaga, T. (2022). Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia. International Soil and Water Conservation Research, 10(3), 487-496. https://doi.org/10.1016/j.iswcr.2021.12.001
- Khan, A. Z.; Ding, X.; Khan, S.; Ayaz, T.; Fidel, R.; Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543
- Khan, A. Z.; Khan, S.; Khan, M. A.; Alam, M.; Ayaz, T. (2020). Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environmental Technology and Innovation, 17, 100590. https://doi.org/10.1016/j.eti.2019.100590
- Khan, M. A.; Ding, X.; Khan, S.; Brusseau, M. L.; Khan, A.; Nawab, J. (2018). The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment, 636, 810–817. https://doi.org/10.1016/j.scitotenv.2018.04.299
- Lahori, A. H.; Mierzwa-Hersztek, M.; Demiraj, E.; Idir, R.; Bui, T. T. X.; Vu, D. D.; Channa, A.; Samoon, N. A.; Zhang, Z. (2020). Clays, limestone and biochar affect the bioavailability and geochemical fractions of cadmium and zinc from zn-smelter polluted soils. Sustainability, 12(20), 1–16. https://doi.org/10.3390/su12208606
- Laird, D. A.; Novak, J. M.; Collins, H. P.; Ippolito, J. A.; Karlen, D. L.; Lentz, R. D.; Sistani, K. R.; Spokas, K.; Van Pelt, R. S. (2017). Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289, 46–53. https://doi.org/10.1016/j.geoderma.2016.11.025
- Lauricella, D.; Butterly, C. R.; Clark, G. J.; Sale, P. G.; Li, G.; Tang, C. (2020). Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments. 20(11), 3951–3962. https://doi.org/10.1007/s11368-020-02721-0
- Lee, H. S.; Kim, Y.; Kim, J.; Shin, H. S. (2022). Quantitative and qualitative characteristics of dissolved organic matter derived from biochar depending on the modification method and biochar type. Journal of Water Process Engineering, 46, 102569. https://doi.org/10.1016/j.jwpe.2022.102569
- Li, J.; Shao, X.; Huang, D.; Shang, J.; Liu, K.; Zhang, Q.; Yang, X.; Li, H.; He, Y. (2020). The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering. 158, 106084. https://doi.org/10.1016/j.ecoleng.2020.106084
- Li, Y.; You, S. (2022). Biochar soil application: soil improvement and pollution remediation. In: Tsang, Daniel C.W.; Ok Yong S. (eds). Agriculture for Achieving Sustainable Development Goals. Ed. Academic Press. p. 97-102. https://doi.org/10.1016/B978-0-323-85343-9.00004-5
- Liang, X.; Chen, L.; Liu, Z.; Jin, Y.; He, M.; Zhao, Z.; Liu, C.; Niyungeko, C.; Arai, Y. (2018). Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest. Land Degradation and Development, 29(7), 2189–2198. https://doi.org/10.1002/ldr.2851
- Lin, Z.; Liu, Q.; Liu, G.; Cowie, A. L.; Bei, Q.; Liu, B.; Wang, X.; Ma, J.; Zhu, J.; Xie, Z. (2017). Effects of Different Biochars on Pinus elliottii Growth, N Use Efficiency, Soil N2O and CH4 Emissions and C Storage in a Subtropical Area of China. Pedosphere, 27(2), 248–261. https://doi.org/10.1016/S1002-0160(17)60314-X
- Liu, B.; Cai, Z.; Zhang, Y.; Liu, G.; Luo, X.; Zheng, H. (2019). Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, 224, 151–161. https://doi.org/10.1016/j.chemosphere.2019.02.100
- Liu, Y.; Chen, Y.; Wang, Y.; Lu, H.; He, L.; Yang, S. (2018). Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degradation and Development, 29(11), 3985–3994. https://doi.org/10.1002/ldr.3147
- Luo, S.; He, B.; Song, D.; Li, T.; Wu, Y.; Yang, L. (2020). Response of bacterial community structure to different biochar addition dosages in karst yellow soil planted with Ryegrass and Daylily. Sustainability, 12(5), 2124 https://doi.org/10.3390/su12052124
- Luo, X.; Chen, L.; Zheng, H.; Chang, J.; Wang, H.; Wang, Z.; Xing, B. (2016). Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 282, 120–128. https://doi.org/10.1016/j.geoderma.2016.07.015
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934–3944. https://doi.org/10.1007/s11368-019-02365-9
- Madrid, D. E. M.; Marrugo-Negrete, J. L. (2021). Effects of adding amendments on the immobilization of heavy metals in mining soils of southern Bolívar. Ciencia Tecnología Agropecuaria, 22(2), e2272. https://doi.org/10.21930/RCTA.VOL22_NUM2_ART:2272
- Manna, S.; Singh, N. (2019). Biochars mediated degradation, leaching and bioavailability of pyrazosulfuron-ethyl in a sandy loam soil. Geoderma, 334, 63–71. https://doi.org/10.1016/j.geoderma.2018.07.032
- Marchal, G.; Smith, K. E. C.; Rein, A.; Winding, A.; Trapp, S.; Karlson, U. G. (2013). Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90(6), 1767–1778. https://doi.org/10.1016/j.chemosphere.2012.07.048
- Mohawesh, O.; Coolong, T.; Aliedeh, M.; Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian Journal of Agricultural Science, 24(6), 1012–1019.
- Nanda, S.; Mohanty, P.; Pant, K. K.; Naik, S.; Kozinski, J. A.; Dalai, A. K. (2013). Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 6(2), 663–677. https://doi.org/10.1007/s12155-012-9281-4
- Nawab, J.; Khan, N.; Ahmed, R.; Khan, S.; Ghani, J.; Rahman, Z.; Khan, F.; Wang, X.; Muhammad, J.; Sher, H. (2019). Influence of different organic geo-sorbents on Spinacia oleracea grown in chromite mine-degraded soil: a greenhouse study. Journal of Soils and Sediments, 19(5), 2417–2432. https://doi.org/10.1007/s11368-019-02260-3
- Negiş, H.; Şeker, C.; Gümüş, I.; Manirakiza, N.; Mücevher, O. (2020). Effects of Biochar and Compost Applications on Penetration Resistance and Physical Quality of a Sandy Clay Loam Soil. Communications in Soil Science and Plant Analysis, 51(1), 38–44. https://doi.org/10.1080/00103624.2019.1695819
- Nguyen, B. T.; Le, L. B.; Pham, L. P.; Nguyen, H. T.; Tran, T. D.; Van Thai, N. (2021). The effects of biochar on the biomass yield of elephant grass (Pennisetum Purpureum Schumach) and properties of acidic soils. Industrial Crops and Products, 161, 113224. https://doi.org/10.1016/j.indcrop.2020.113224
- Ni, N.; Wang, F.; Song, Y.; Bian, Y.; Shi, R.; Yang, X.; Gu, C.; Jiang, X. (2018). Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Chemosphere, 196, 288–296. https://doi.org/10.1016/j.chemosphere.2017.12.192
- Palakit, K.; Duangsathaporn, K.; Lumyai, P.; Sangram, N.; Sikareepaisarn, P.; Khantawan, C. (2018). Efficiency of biochar and bio-fertilizers derived from maize debris as soil amendments. Environment and Natural Resources Journal, 16(2), 79–90. https://doi.org/10.14456/ennrj.2018.17
- Qiang, M.; Gao, J.; Han, J.; Zhang, H.; Lin, T.; Long, S. (2020). How adding biochar improves loessal soil fertility and sunflower yield on consolidation project land on the chinese loess plateau. Polish Journal of Environmental Studies, 29(5), 3759–3769. https://doi.org/10.15244/pjoes/118204
- Raul, C.; Bharti, V. S.; Dar Jaffer, Y.; Lenka, S.; Krishna, G. (2021). Sugarcane bagasse biochar: Suitable amendment for inland aquaculture soils. Aquaculture Research, 52(2), 643–654. https://doi.org/10.1111/are.14922
- Rodríguez-Vila, A.; Forján, R.; Guedes, R. S.; Covelo, E. F. (2016). Changes on the Phytoavailability of Nutrients in a Mine Soil
- Reclaimed with Compost and Biochar. Water, Air, and Soil Pollution, 227(12), 1-12. https://doi.org/10.1007/s11270-016-3155-x
- Román-Dañobeytia, F.; Cabanillas, F.; Lefebvre, D.; Farfan, J.; Alferez, J.; Polo-Villanueva, F.; Llacsahuanga, J.; Vega, C. M.; Velasquez, M.; Corvera, R.; Fernandez, L. E.; Silman, M. R, (2021). Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering, 159, 106097. https://doi.org/10.1016/j.ecoleng.2020.106097
- Roy, R.; Núñez-Delgado, A.; Sultana, S.; Wang, J.; Munir, A.; Battaglia, M. L.; Sarker, T.; Seleiman, M. F.; Barmon, M.; Zhang, R. (2021). Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management, 295, 113076. https://doi.org/10.1016/j.jenvman.2021.113076
- Saleem, A. M.; Ribeiro, G. O. Jr.; Yang, W. Z.; Ran, T.; Beauchemin, K. A.; Mcgeough, E. J.; Ominski, K. H.; Okine, E. K.; Mcallister, T. A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of animal science, 96(8), 3121–3130. https://doi.org/10.1093/jas/sky204
- Schillem, S.; Schneider, B. U.; Zeihser, U.; Hüttl, R. F. (2019). Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Archives of Agronomy and Soil Science. 65(13), 1913–1925. https://doi.org/10.1080/03650340.2019.1582767
- Seitz, S.; Teuber, S.; Geißler, C.; Goebes, P.; Scholten, T. (2020). How do newly-amended biochar particles affect erodibility and soil water movement? —a small-scale experimental approach. Soil Systems, 4(4), 1–14. https://doi.org/10.3390/SOILSYSTEMS4040060
- Singh, G.; Mavi, M. S.; Choudhary, O. P.; Gupta, N.; Singh, Y. (2021). Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. Journal of Environmental Management, 295; 113277. https://doi.org/10.1016/j.jenvman.2021.113277
- Situmeang, Y. P.; Adnyana, I. M.; Subadiyasa, I. N. N.; Merit, I. N. (2018). Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improved soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2241–2248. https://doi.org/10.18517/ijaseit.8.5.2179
- Somerville, P. D.; Farrell, C.; May, P. B.; Livesley, S. J. (2019). Tree water use strategies and soil type determine growth responses to biochar and compost organic amendments. Soil and Tillage Research, 192, 12–21. https://doi.org/10.1016/j.still.2019.04.023
- Song, X.; Li, H.; Song, J.; Chen, W.; Shi, L. (2022). Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96–110. https://doi.org/10.1016/j.plaphy.2022.05.008
- Teutscherova, N.; Lojka, B.; Houška, J.; Masaguer, A.; Benito, M.; Vazquez, E. (2018). Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. European Journal of Soil Biology, 88, 15–26. https://doi.org/10.1016/j.ejsobi.2018.06.002
- Tran, C. V.; Pham, H. Q.; Dinh, T. V.; Nguyen, K. M. (2020). Influence of biochar amendments on surface charge and bioavailability of heavy metals in degraded soils. Suranaree Journal of Science and Technology, 27(4), 1–10.
- Trippe, K. M.; Manning, V. A.; Reardon, C. L.; Klein, A. M.; Weidman, C.; Ducey, T. F.; Novak, J. M.; Watts, D. W.; Rushmiller, H.; Spokas, K. A.; Ippolito, J. A.; Johnson, M. G. (2021). Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Applied Soil Ecology, 165, 103962. https://doi.org/10.1016/j.apsoil.2021.103962
- Vu, Q. D.; De Neergaard, A.; Tran, T. D.; Hoang, Q. Q.; Ly, P.; Tran, T. M.; Jensen, L. S. (2015). Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 103(3), 329–346. https://doi.org/10.1007/s10705-015-9746-x
- Wang, B.; Lee, X.; Theng, B. K.; Zhang, L.; Cheng, H.; Cheng, J.; Lyu, W. (2019). Biochar addition can reduce NOx gas emissions from a calcareous soil. Environmental Pollutants and Bioavailability, 31(1), 38-48. https://doi.org/10.1080/09542299.2018.1544035
- Wei, M.; Liu, X.; He, Y.; Xu, X.; Wu, Z.; Yu, K.; Zheng, X. (2020). Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere, 16, 100261 https://doi.org/10.1016/j.rhisph.2020.100261
- Wei, W.; Liu, S.; Cui, D.; Ding, X. (2021). Interaction between nitrogen fertilizer and biochar fertilization on crop yield and soil chemical quality in a temperate region. Journal of Agricultural Science, 159 (1–2), 106–115. https://doi.org/10.1017/S0021859621000277
- Winders, T. M.; Jolly-Breithaupt, M. L.; Wilson, H. C.; Macdonald, J. C.; Erickson, G. E.; Watson, A. K. (2019). Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers. Translational Animal Science, 3(2), 775-783. https://doi.org/10.1093/tas/txz027
- Wu, C.; Li, Y.; Chen, M.; Luo, X.; Chen, Y.; Belzile, N.; Huang, S. (2018). Adsorption of cadmium on degraded soils amended with maize-stalk-derived biochar. International Journal of Environmental Research and Public Health, 15(11), 2331. https://doi.org/10.3390/ijerph15112331
- Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. (2021). Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agricultural Water Management, 255, 106995. https://doi.org/10.1016/j.agwat.2021.106995
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2021). Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, 794, 148757. https://doi.org/10.1016/j.scitotenv.2021.148757
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2022). Biochar and compost amendments alter the structure of the soil fungal network in a karst mountainous area. Land Degradation and Development, 33(5), 685–697. https://doi.org/10.1002/ldr.4148
- Yang, L.; Bian, X.; Yang, R.; Zhou, C.; Tang, B. (2018). Assessment of organic amendments for improving coastal saline soil. Land Degradation and Development, 29(9), 3204–3211. https://doi.org/10.1002/ldr.3027
- Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Zhang, C.; Li, Y. (2022). Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere, 298, 134191. https://doi.org/10.1016/j.chemosphere.2022.134191
- Yousaf, M. T. B.; Nawaz, M. F.; Rehman, M. Z. U.; Rasul, F.; Tanvir, M. A. (2021). Ecophysiological response of early stage Eucalyptus camaldulensis to biochar and other organic amendments under salt stress. Pakistan Journal of Agricultural Sciences, 58(3), 999–1006. https://doi.org/10.21162/PAKJAS/21.1012
- Yousaf, M. T. B.; Nawaz, M. F.; Zia Ur Rehman, M.; Gul, S. L.; Yasin, G.; Rizwan, M.; Ali, S. (2021). Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation, 23(13), 1412–1422. https://doi.org/10.1080/15226514.2021.1901849
- Zhang, Q.; Wan, G.; Zhou, C.; Luo, J.; Lin, J.; Zhao, X. (2020). Rehabilitation effect of the combined application of bamboo biochar and coal ash on ion-adsorption-type rare earth tailings. Journal of Soils and Sediments, 20(9), 3351–3357. https://doi.org/10.1007/s11368-020-02670-8
- Zhao, C.; Zhang, Y.; Liu, X.; Ma, X.; Meng, Y.; Li, X.; Quan, X.; Shan, J.; Zhao, W.; Wang, H. (2020). Comparing the Effects of Biochar and Straw Amendment on Soil Carbon Pools and Bacterial Community Structure in Degraded Soil. Journal of Soil Science and Plant Nutrition, 20(2), 751–760. https://doi.org/10.1007/s42729-019-00162-4
- Zhao, L.; Zhang, X.; Cheng, G.; Zhang, L.; Liu, X.; Li, H. (2017). Effects of biochar on microbial functional diversity of vegetable garden soil. Acta Ecologica Sinica, 37(14), 4754–4762. https://doi.org/10.5846/stxb201604220758
- Zhaoxiang, W.; Huihu, L.; Qiaoli, L.; Changyan, Y.; Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264. https://doi.org/10.1016/j.rhisph.2020.100264
- Zhelezova, A.; Cederlund, H.; Stenström, J. (2017). Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides. Water, Air, and Soil Pollution, 228, 216. https://doi.org/10.1007/s11270-017-3392-7