Skip to main navigation menu Skip to main content Skip to site footer

Vertically coupled double conical quantum dot of GaAs/AlxGa1-xAs under hydrostatic pressure and temperature effects

Punto cuántico cónico doble verticalmente acoplado de GaAs/AlxGa1-xAs bajo efectos de presión hidrostática y temperatura


Punto cuántico cónico doble de GaAs rodeado de Al0,3Ga0,7As de la izquierda con dimensiones: a = 6,5 nm, b variable de 4 nm a 10 nm, c = 3,45 nm, d = 20 nm, e = 30 nm, R1 = 49, 4 nm, R2 = 56,5 nm y con límites frontera de 65 nm de ancho por 60 nm de alto. El punto rojo representa la posición de la impureza en z = 4 nm. Al lado derecho se representa la figura rotada de altura 60 nm y radio 65 nm.
Open | Download


Section
Articles

How to Cite
Vertically coupled double conical quantum dot of GaAs/AlxGa1-xAs under hydrostatic pressure and temperature effects. (2022). Revista EIA, 20(39), 3920 pp. 1-15. https://doi.org/10.24050/reia.v20i39.1652

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Starting from a structure composed of two conical quantum dots (CQDs) vertically coupled of GaAs surrounded by AlxGa1-xAs at a concentration of 0.3, it is first studied how the dimensions of the system cause a change in the confinement, for this the height of the upper quantum well and the optimal one is found to work with, with this defined, the effects of hydrostatic pressure (between 0 GPa and 3 GPa) and temperature (between 0 K and 300 K) on the effective mass, the width band gap (Gap), the dielectric constant and its impact on the self-energies and self-functions of the system. In addition, the effects of including the presence of an impurity in the structure located in the lower quantum well will be evaluated. Making use of the finite element method, variations in the energies and wave functions of the system are evidenced, which are due to  changes of the effective mass and the new potential energy. Analyzing the behavior of the binding energy, a change in the dielectric constant is noted when the system is subjected to a temperature around 200 K, since above this value the Gap changes from being direct to being indirect. Finally, the presence of the impurity in the system generates an additional potential, consequently, the energies in the structure decrease under the evaluated effects, making more forceful changes in the wave functions and energies due to this potential.


Article visits 419 | PDF visits 198


Downloads

Download data is not yet available.
  1. Aouami, A.; Bikerouin, M.; Feddi, H.; Aghoutane, N.; El-Yadri, M.; Feddi, E.; Dujardin, F.; Radu, A.; Restrepo, R.L.; Vinasco, A.; Morales, A.L.; Duque, C.A.; Mora-Ramos, M.E. (2020). Linear and nonlinear optical properties of a single dopant in GaN conical quantum dot with spherical cap. Philosophical Magazine, 100 (19), 2503-2523. https://doi.org/10.1080/14786435.2020.1766711
  2. Ashrafi-dalkhani, Vahid; Ghajarpour, Sajad; Karimi Mohammad Javad. (2019). Effects of spin–orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring. The European Physical Journal, 92, 19(6pp). https://doi.org/10.1140/epjb/e2018-90691-5
  3. Aspnes, D.E. (1976). GaAas lower conduction-band minima: Ordering and properties, Physical Review B, 14 (12), 5331-5343. https://doi.org/10.1103/PhysRevB.14.5331
  4. Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H. (2013). Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot, Journal of Luminescence, 135, 271-275. https://doi.org/10.1016/j.jlumin.2012.09.032
  5. Chnafi, M.; Belamkadem, L.; Mommadi, O.; Boussetta, R; El Hadi, M.; El Moussaouy, A.; Falyouni, F.; Vinasco, J.A.; Mora-Rey, F.; Duque, C.A. (2021). Hydrostatic pressure and temperature effects on spectrum of an off-center single dopant in a conical quantum dot with spherical edge, Superlattices and Microstructures, 159, 107052 (14pp). https://doi.org/10.1016/j.spmi.2021.107052
  6. COMSOL. Multiphysics, v. 5.6; COMSOL AB: Stockholm, Sweden, 2021.
  7. Duque, C.A.; López, S.Y.; Mora-Ramos, M.E. (2007). Hydrostatic pressure effects on the Γ-X conduction band mixing and the binding energy of a donor impurity in GaAs-GaAlAs quantum wells, Physica Status Solidi b, 244, (6), 1964-1970. https://doi.org/10.1002/pssb.200642377
  8. Gil-Corrales, J.A.; Morales Aramburo, A.L.; Duque Echeverri, C.A. (2018). Estados electrónicos de puntos cuánticos piramidales y cónicos. Revista EIA, 15(30), 161–175. https://doi.org/10.24050/reia.v15i30.1257
  9. Heyn, C.; Radu, A.; Vinasco, J.A.; Laroze, D.; Restrepo, R.L.; Tulupenko, V.; Hieu Nguyen, N.; Phuc Huynh, V.; Mora-Ramos, M.E.; Ojeda, J.H; Morales, A.L.; Duque, C.A. (2021). Exciton states in conical quantum dots under applied electric and magnetic fields. Optics and laser Technology, 139, 106953 (13pp). https://doi.org/10.1016/j.optlastec.2021.106953
  10. Karimi, M.J.; Rezaei, G.; Nazari. M. (2014). Linear and nonlinear optical properties of
  11. multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity,
  12. hydrostatic pressure and temperature. Journal of Luminescence, 145, 55-60.
  13. https://doi.org/10.1016/j.jlumin.2013.07.046
  14. Khachatryan, K.S.; Mkrtchyan, M.A.; Hayrapetyan, D.B.; Kazaryan, E.M.; Sarkisyan, H.A.
  15. (2021). Adiabatic description of the electroabsorption in strongly prolate and
  16. oblate conical quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 134,
  17. (9pp). https://doi.org/10.1016/j.physe.2021.114887
  18. Liang, Shijun.; Xie, Wenfang. (2011). Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot, Physica B, 406, 11 (7pp). https://doi.org/10.1016/j.physb.2011.03.035
  19. Mommadi, O.; El Moussaouy, A.; Chnafi, M.; El Hadi, M.; Nougaoui, A.; Megrez, H. (2020). Exciton–phonon properties in cylindrical quantum dot with parabolic confinement potential under electric field. Physica E: Low-dimensional Systems and Nanostructures, 118, 113903 (7pp). https://doi.org/10.1016/j.physe.2019.113903
  20. Osorio, J.A.; Caicedo-Paredes, D.; Vinasco, J.A.; Morales, A.L.; Radu, A.; Restrepo, R. L.; Martínez-Orozco, J.C.; Tiutiunnyk, A.; Laroze, D.; Hieu, Nguyen N.; Phuc, Huynh V.; Mora-Ramos, M. E.; Duque, C.A. (2020). Pyramidal core-shell quantum dot under applied electric and magnetic fields, Scientific Reports, 10, 8961 (14pp). https://doi.org/10.1038/s41598-020-65442-x
  21. Pulgar-Velásquez, L.; Sierra-Ortega, J.; Vinasco, J. A.; Laroze, D.; Radu, A.; Kasapoglu, E.; Restrepo, R. L.; Gil-Corrales, J. A.; Morales, A. L.; Duque, C. A. (2021). Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field. Nanomaterials, 11, 2832 (19pp). https://doi.org/10.3390/nano11112832
  22. Roghaieh Parvizi. (2015). Interband optical transitions of a strained InxGa1-xAs/GaAs
  23. quantum dot/wetting layer with various In mole fractions. Physica B: Condensed Matter, 456,
  24. -92. https://doi.org/10.1016/j.physb.2014.08.029
  25. Samara, G.A. (1983). Temperature and pressure dependences of the dielectric constants of
  26. semiconductors, Physical Review B, 27, 6 (12pp). https://doi.org/10.1103/physrevb.27.3494
  27. Sivakami, A.; Mahendran, M. (2010). Hydrostatic pressure and temperature dependence of correlation energy in a spherical quantum dot, Superlattices and Microstructures, 47, 4(8pp) https://doi.org/10.1016/j.spmi.2009.12.010
  28. Vinasco, J.A.; Radu, A.; Tiutiunnyk, A.; Restrepo, R.L.; Laroze, D.; Feddi, E.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A. (2020). Revisiting the adiabatic approximation for bound states calculation in axisymmetric and asymmetrical quantum structures. Superlattices and Microstructures, 138, 106384(13pp). https://doi.org/10.1016/j.spmi.2019.106384
  29. Welber, B.; Cardona, M.; Kim, C.K.; Rodriguez, S. (1975). Dependence of direct energy gap of GaAs on hydrostatic pressure, Physical Review B, 12, 12 (10pp). https://doi.org/10.1103/PhysRevB.12.5729
  30. Zeiri, N.; Naifar, A.; Abdi-Ben Nasrallah, S.; Said, M. (2019). Theoretical studies on third nonlinear optical susceptibility in CdTe–CdS–ZnS core–shell–shell quantum dots. Photonics and Nanostructures - Fundamentals and Applications, 36, 100725 (11pp). https://doi.org/10.1016/j.photonics.2019.100