Skip to main navigation menu Skip to main content Skip to site footer

Comparison of 1D and 2D hecras models for the simulation of urban rivers

Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos



Open | Download


Section
Articles

How to Cite
Comparison of 1D and 2D hecras models for the simulation of urban rivers. (2023). Revista EIA, 20(40), 4005 pp. 1-14. https://doi.org/10.24050/reia.v20i40.1661

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Juan Daniel Rios Arboleda

In this research work, a comparative analysis is carried out between the results of Flow velocity and water depth obtained through the implementation of two well-known free-use software, the HEC-RAS 4.1 one-dimensional version and the HEC-RAS 6.0 two-dimensional version. The hydraulic simulation was carried out in a straight section with a uniform trapezoidal geometry of the Medellín river channel where topo-bathymetry and design flows were available. The preliminary results obtained with the HEC-RAS 6.0 two-dimensional version suggest that for straight and uniform sections the simulation results are quite similar to those obtained with the HEC-RAS 4.1 one-dimensional version. It is concluded that the elaboration of both types of models requires a significant degree of experience, however, the one-dimensional model yields values of the hydraulic variables without such a high degree of effort and computational cost, however, it is evident that for the effects of stains of flooding and definition of depths, the use of the two-dimensional model is more convenient since it allows obtaining greater depths.


Article visits 525 | PDF visits 702


Downloads

Download data is not yet available.
  1. Ardiclioglu, M., Hadi, A. M. W. M., Periku, E., & Kuriqi, A. (2022). Experimental and Numerical Investigation of Bridge Configuration Effect on Hydraulic Regime. International Journal of Civil Engineering, 20(8), 981–991. https://doi.org/10.1007/s40999-022-00715-2
  2. Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10.
  3. Brunner, G. W. (2010). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 4.1.
  4. Brunner, G. W. (2020). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 6.0 Beta.
  5. Brunner, G. W., Piper, S., Jensen, M., & Chacon, B. (2015). Combined 1D and 2D Hydraulic Modeling within HEC-RAS. World Environmental and Water Resources Congress 2015. https://doi.org/doi:10.1061/9780784479162.141
  6. Dasallas, L., Kim, Y., & An, H. (2019). Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water. https://doi.org/10.3390/w11102048
  7. Deltares. (2022). Delft3D-FLOW, User Manual.
  8. DHI. (2023). MIKE 21 Flow Model FM.
  9. Espinoza Vigil, A. J., & Booker, J. (2023). Hydrological Vulnerability Assessment of Riverine Bridges: The Bajo Grau Bridge Case Study. Water. https://doi.org/10.3390/w15050846
  10. Farias, H. D., Domínguez Ruben, L., & Prieto Villarroya, y J. (2020). Análisis hidro-sedimentológico 2d del comportamiento de un campo de espigones para la protección de márgenes en un río meandriforme. Ribagua, 7(2), 43–55. https://doi.org/10.1080/23863781.2021.1911609
  11. Ghimire, E., Sharma, S., & Lamichhane, N. (2022). Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH Journal of Hydraulic Engineering, 28(1), 110–126. https://doi.org/10.1080/09715010.2020.1824621
  12. Gibson, S., Sánchez, A., Piper, S., & Brunner, G. (2017, October 31). New One-Dimensional Sediment Features in HEC-RAS 5.0 and 5.1. World Environmental and Water Resources Congress 2017. https://doi.org/doi:10.1061/9780784480625.018
  13. Hervouet, J. M. (2007). Hydrodynamics of free surface flows, modelling with the finite element method. John Wiley & Sons.
  14. Huţanu, E., Mihu-Pintilie, A., Urzica, A., Paveluc, L. E., Stoleriu, C. C., & Grozavu, A. (2020). Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water. https://doi.org/10.3390/w12061624
  15. Le, T. B., Crosato, A., Mosselman, E., & Uijttewaal, W. S. J. (2018). On the stability of river bifurcations created by longitudinal training walls. Numerical investigation. Advances in Water Resources, 113, 112–125. https://doi.org/https://doi.org/10.1016/j.advwatres.2018.01.012
  16. Malik, S., & Pal, S. C. (2021). Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India. SN Applied Sciences, 3(1), 31. https://doi.org/10.1007/s42452-020-04104-z
  17. Mehta, D. J., & Yadav, S. M. (2020). Analysis of scour depth in the case of parallel bridges using HEC-RAS. Water Supply, 20(8), 3419–3432. https://doi.org/10.2166/ws.2020.255
  18. Mosselman, E. (2020). Studies on River Training. Water. https://doi.org/10.3390/w12113100
  19. Moya Quiroga, V., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001
  20. Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449–1460. https://doi.org/10.1007/s40808-021-01166-9
  21. Rangari, V. A., Umamahesh, N. V, & Bhatt, C. M. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839–1851. https://doi.org/10.1007/s40808-019-00641-8
  22. Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., & Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769–1782. https://doi.org/10.1080/02626667.2019.1671982
  23. Tamiru, H., & Dinka, M. O. (2021). Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36, 100855. https://doi.org/https://doi.org/10.1016/j.ejrh.2021.100855
  24. Universidad Nacional. (2013). Estudio de patología del canal del río Medellín entre la variante de Caldas y la desembocadura de la quebrada La García: Informe final revisado / (#000806553). Medellín.
  25. Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105–113. https://doi.org/https://doi.org/10.1016/j.cageo.2011.10.004