Cellulases production with pure and mixed cultures of Trichoderma reesei and Aspergillus fumigatus using rice husks as substrate
Producción de celulasas con cultivos puros y mixtos de Trichoderma reesei y Aspergillus fumigatus usando cascarilla de arroz como sustrato


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Cellulolytic enzymes are used in different industries; many of them are obtained from fungi
and bacteria that use agro-industrial waste with a high cellulose content as a substrate.
Some fungi of the genera Trichoderma and Aspergillus synthesize cellulases with different
mechanisms of action and mixed cultures of these fungi have been proposed as a strategy
to improve the hydrolysis of cellulosic materials associated with the production of these
enzymes. The objective of this study was to verify the production of cellulases from mixed
and pure cultures of native isolates of T. reesei and A. fumigatus with cellulolytic activity
using rice husks as a substrate. Both fungi produce enzymes that catalyze the release of
reducing sugars from carboxymethylcellulose. Solid state fermentation was carried out
following a factorial design and the effect of the type of inoculum and incubation time on
the cellulolytic activity of the extracts obtained was analyzed. Cellulases production after
15 days of incubation was higher than that obtained with 8 days of culture and it was
confirmed through an analysis of variance that the cellulases production for the mixed
and pure cultures of T. reesei on day 15 (34.5 and 31.9 U/g, respectively) did not present
significant differences. It was shown in this work that rice husks have the potential to be
used to obtain fungal enzymes, although the activity of enzymes obtained using this byproduct is lower than that produced with other cellulosic materials.
Article visits 443 | PDF visits 336
Downloads
- Ahamed, A.; Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), pp. 399-407. https://doi.org/10.1016/j.bej.2007.11.030.
- Bansal, N.; Tewari, R.; Soni, R.; Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32(7), pp. 1341-1346. https://doi.org/10.1016/j.wasman.2012.03.006.
- Barnett, H.; Hunter, B. (1998). Illustrated genera of imperfect fungi, 4a ed., Saint Paul, American Phytopathological Society. 218 p.
- Brijwani, K.; Oberoi, H. S.; Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), pp. 120-128. https://doi.org/10.1016/j.procbio.2009.08.015.
- Castillo, E. F.; Cristancho, D. E.; Arellano, A.V. (2006). Study of the operational conditions for anaerobic digestion of urban solid wastes. Waste Management, 26(5), pp. 546-556. https://doi.org/10.1016/j.wasman.2005.06.003.
- Centeno, R.; Pavone, D. (2015). Producción de celulasas y biomasa del hongo Trichoderma reesei utilizando lodo papelero como fuente de carbono. Revista de La Sociedad Venezolana de Microbiología, 35(1), pp. 40-46.
- Danso, B.; Ali, S. S.; Xie, R.; Sun, J. (2022). Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel, 310. https://doi.org/10.1016/j.fuel.2021.122333
- Ejaz, U.; Sohail, M.; Ghanemi, A. (2021). Cellulases: from bioactivity to a variety of industrial applications. Biomimetics, 6(3), 44. https://doi.org/10.3390/biomimetics6030044.
- Gunam, I. B. W.; Antara, N. S.; Anggreni, A. A. M. D.; Setiyo, Y.; Wiguna, I. P. E.; Wijaya, I. M. M.; Putra, I. W. W. P. (2019). Chemical pretreatment of lignocellulosic wastes for cellulase production by Aspergillus niger FNU 6018. AIP Conference Proceedings 2155. https://doi.org/10.1063/1.5125544.
- Gutierrez-Correa, M.; Portal, L.; Moreno, P.; Tengerdy, R. P. (1999). Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresource Technology, 68(2), pp. 173-178. https://doi.org/10.1016/S0960-8524(98)00139-4.
- Gutierrez-Correa, M.; Tengerdy, R. P. (1997). Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnology Letters, 19(7), pp. 665-667. https://doi.org/10.1023/A:1018342916095.
- Kupski, L.; Pagnussatt, F. A.; Buffon, J. G.; Furlong, E. B. (2014). Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: Production, characterization, and thermal stability. Applied Biochemistry and Biotechnology, 172(1), pp. 458-468. https://doi.org/10.1007/s12010-013-0518-2.
- Li, C.; Lin, F.; Li, Y.; Wei, W.; Wang, H.; Qin, L.; Zhou, Z.; Li, B.; Wu, F; Chen, Z. (2016). A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microbial Cell Factories, 15(1), 151. https://doi.org/10.1186/s12934-016-0550-3.
- Li, S.; Yang, X.; Yang, S.; Zhu, M.; Wang, X. (2012). Technology prospecting on enzymes: application, marketing and engineering. Computational and Structural Biotechnology Journal, 2(3). https://doi.org/10.5936/csbj.201209017.
- Manjarrés, K.; Piñeros, Y.; Rodríguez-Sandoval, E. (2011). Evaluación del complejo enzimático producido mediante el cocultivo de Aspergillus sp. y Trichoderma sp. en fase sólida sobre residuos de palma. Bioagro, 23(1), pp. 19-26.
- Miller, G. L. (1959). Use of Dinitrosalicylic Acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), pp. 426-428. https://doi.org/10.1021/ac60147a030.
- Nigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3), pp. 597-611. https://doi.org/10.3390/biom3030597.
- Passos, D. de F.; Pereira, N.; Castro, A. de M. (2018). A comparative review of recent advances in cellulases production by Aspergillus,
- Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Current Opinion in Green and Sustainable Chemistry, 14, pp. 60-66. https://doi.org/10.1016/j.cogsc.2018.06.003.
- Patel, A. K.; Singhania, R. R.; Pandey, A. (2017). Production, purification, and application of microbial enzymes. Brahmachari, G. Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications, Cambridge, MA: Academic Press, pp. 13-41. https://doi.org/10.1016/B978-0-12-803725-6.00002-9.
- Saha, R.; Bhattacharya, D.; Mukhopadhyay, M. (2022). Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Conversion and Management: X, 13. https://doi.org/10.1016/j.ecmx.2021.100153.
- Salazar, C. L.; Rua, Á. L. (2012). Características morfológicas microscópicas de especies de Aspergillus asociadas a infecciones en humanos. Hechos Microbiológicos, 3(2), pp. 93-96.
- Sartori, T.; Tibolla, H.; Prigol, E.; Colla, L. M.; Vieira Costa, A. J.; Bertolin, T. E.; Costa, J. A. V.; Bertolin, T. E. (2015). Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. BioMed Research International, 2015. https://doi.org/10.1155/2015/342716.
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 174. https://doi.org/10.1007/s13205-016-0485-8.
- Sun, W.-C.; Cheng, C.-H.; Lee, W.-C. (2008). Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochemistry, 43(10), pp. 1083-1087. https://doi.org/10.1016/j.procbio.2008.05.015.
- Ugheoke, B. I.; Mamat, O. (2012). A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo International Journal of Science and Technology, 6(3), pp. 430-448. https://doi.org/10.14456/mijst.2012.31
- Wen, Z.; Liao, W.; Chen, S. (2005). Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 40(9), pp. 3087-3094. https://doi.org/10.1016/j.procbio.2005.03.044.
- Xing Y.; Bu L. X.; Wang K.; Jiang J. X. (2012). Pretreatment of furfural residues with alkaline peroxide to improve cellulose hydrolysis. Characterization of isolated lignin. Cellulose Chemistry and Technology, 46(3-4), pp. 249-260.