Skip to main navigation menu Skip to main content Skip to site footer

Computational Intelligence to Assess the Existence of Pain, Based on the Use of Electrophysiological Signals

Inteligencia computacional para la medición de presencia de dolor mediante el uso de señales electrofisiológicas



Open | Download


Section
Articles

How to Cite
Computational Intelligence to Assess the Existence of Pain, Based on the Use of Electrophysiological Signals. (2023). Revista EIA, 20(40), 4011 pp. 1-24. https://doi.org/10.24050/reia.v20i40.1683

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Lina María Peñuela
Edinson Felipe Porras Hilarión

Pain is a health problem that affects people physically and emotionally. To determine the
pain experimented, a survey is carried out, which implies self-evaluation, honesty, and
verbal or facial communication capability. In this paper, we present a comparison of two
computational algorithms for two classifiers: the first classifier discriminates between
pain and no pain, and the second one classifies three levels of pain. The algorithms
employed were the support vector machine (SVM) and a quadratic discriminant analysis
method (QDA). Acute pain was induced in fifteen participants by electrostimulation,
during the experiment we assessed electromyography (EMG), electrocardiography (ECG),
electrodermal activity (EDA), and electroencephalography (EEG), as well we asked the
participants to report their pain perception using the visual analog scale. Subsequently, we
extracted features related to pain assessment from the acquired signals. Three analyses
were performed, binary classifications with multiple features, binary classifications with
one feature, and three-level classifications with various features. We compared the SVM and
the QDA algorithms using the confusion matrix, and the computational cost. For the binary
classification, the SVM algorithm accuracy was 88.02% and the QDA algorithm accuracy was
70.78%, with a computational cost of 9.587 s and 3.023 s, respectively.


Article visits 253 | PDF visits 171


Downloads

Download data is not yet available.
  1. Bellmann P.; Schwenker F. (2020). Automated pain assessment: Is it useful to combine person-specific data samples?. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Caberra, ACT, Australia. pp. 1588–1593. DOI: 10.1109/SSCI47803.2020.9308279
  2. Breau L. (2010). The science of pain measurement and the frustration of clinical pain assessment: Does an individualized numerical rating scale bridge the gap for children with intellectual disabilities? PAIN. 150(2), pp. 213-214. DOI: 10.1016/j.pain.2010.03.029
  3. Briggs M.; Closs J. S. (1999). A descriptive study of the use of visual analogue scales and verbal rating scales for the assessment of postoperative pain in orthopedic patients. Journal of Pain and Symptom Management. 18(6), pp. 438–446. DOI: 10.1016/s0885-3924(99)00092-5.
  4. Díaz, R.; Marulanda, F. (2019). Dolor crónico nociceptivo y neuropático en población adulta de Manizales (Colombia). Acta Médica Colombiana, 36(1), pp. 10-17. DOI: 10.36104/amc.2011.151
  5. Christie S.; di Fronso S.; Bertollo M.; Werthner P. (2017). Individual alpha peak frequency in ice hockey shooting performance. Frontiers in Psychology. 8, p. 762. DOI: 10.3389/fpsyg.2017.00762
  6. Egede, J. O.; Song, S.; Olugbade, T. A.; Wang, C.; Williams, A. C. D. C.; Meng, H.; Aung, M.; Lane, N. D.; Valstar, M.; Bianchi-Berthouze, N. (2020). EMOPAIN challenge 2020: Multimodal pain evaluation from facial and bodily expressions. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG), Buenos Aires, Argentina. pp. 849–856. DOI: 10.1109/FG47880.2020.00078
  7. Erdogan, B.; Ogul, H. (2020). Objective pain assessment using vital signs. Procedia Computer Science. 170, pp. 947–952. DOI:10.1016/j.procs.2020.03.103
  8. Hadjileontiadis, L. J. (2015). Eeg-based tonic cold pain characterization using wavelet higher order spectral features. IEEE Transactions on Biomedical Engineering. 62(8), pp. 1981–1991. DOI: 10.1109/TBME.2015.2409133
  9. Hadjileontiadis, L. J. (2018). Continuous wavelet transform and higher-order spectrum: combinatory potentialities in breath sound analysis and electroencephalogram-based pain characterization. Philosophical Transactions of The Royal Society a Mathematical, physical, and engineering sciences. 376 (2126). DOI: 10.1098/rsta.2017.0249
  10. Hassan, T.; Seuß, D.; Wollenberg, J.; Weitz, K.; Kunz, M.; Lautenbacher, S.; Garbas, J. U.; Schmid, U. (2021). Automatic detection of pain from facial expressions: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 43(6), pp. 1815–1831. DOI: 10.5121/ijcses.2012.3604. 47
  11. Hautala, A. J.; Karppinen, J.; Sepp ̈anen, T. (2016). Short-term assessment of autonomic nervous system as a potential tool to quantify pain experience. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando,FL, USA. pp. 2684–2687. DOI: 10.1109/EMBC.2016.7591283
  12. Hung, C.; Shen, T.; Liang, C.; Wu, W. (2014). Using surface electromyography (semg) to classify low back pain based on lifting capacity evaluation with principal component analysis neural network method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. pp. 18–21. DOI: 10.1109/EMBC.2014.6943518
  13. Jollant, F.; Voegeli, G.; Kordsmeier, N. C.; Carbajal, J. M.; Richard-Devantoy, S.; Turecki, G.; Caceda, R. (2019). A visual analog scale to measure psychological and physical pain: A preliminary validation of the ppp-vas in two independent samples of depressed patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 90, pp.55–61. DOI: 10.1016/j.pnpbp.2018.10.018
  14. Kostyunina, M. B.; Kulikov, M. A. (1996). Frequency characteristics of eeg spectra in the emotions. Neuroscience and Behavioral Physiology. 26(4), pp. 340–343. DOI: 10.1007/BF02359037
  15. Lusher, J.; Elander, J.; Bevan, D.; Telfe,r P.; Burton, B. (2006). Analgesic addiction and pseudo-addiction in painful chronic illness. The Clinical Journal of Pain. 22(3). DOI: 10.1097/01.ajp.0000176360.94644.41
  16. Medrano, R.; Varela, A.; Domínguez, M.; PardM, G.; Acosta, Y.; Pardo, G. (2010). Aspectos epidemiológicos relacionados con el
  17. dolor en la población adulta. Revista Archivo Médico de Camagüey. 14(4). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552010000400013&lng=es&tlng=es.
  18. Monroe, T. B.; Misra, S.; Habermann, R. C.; Dietrich, M. S.; Bruehl, S. P.; Cowan, R. L.; Newhouse, P. A.; Simmons, S. F. (2015). Specific physician orders improve pain detection and pain reports in nursing home residents: Preliminary data. Pain management nursing: official journal of the American Society of Pain Management Nurses. 16(5), pp. 770–780. DOI: 10.1016/j.pmn.2015.06.002
  19. Nir, R. R.; Sinai, A.; Raz, E.; Sprecher, E.; Yarnitsky, D. (2010). Pain assessment by continuous eeg: Association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain research. 1344, pp. 77–86. DOI: 10.1016/j.brainres.2010.05.004
  20. Nisbet, G.; Sehgal, A. (2019). Pharmacology in the management of chronic pain. Anaesthesia and Intensive Care Medicine. 20(10), pp. 555 – 558. DOI:10.1016/j.mpaic.2019.07.009
  21. Nora D. (2014). America’s addiction to opioids: Heroin and prescription drug abuse. Pearson Educacion. Padmanabhan S, SindhuG. 2014. Design of an ecg acquisition device for the nonlinear analysis of heart rate variability (hrv). 02
  22. Petrovic, P.; Petersson, K. M.; Ghatan, P.; Stone-Elander, S.; Ingvar, M. (2000). Pain-related cerebral activation is altered by a distracting cognitive task. Pain. 85, pp. 19–30. DOI: 10.1016/s0304-3959(99)00232-8
  23. Pikulkaew, K.; Chouvatut, V. (2021). Enhanced pain detection and movement of motion with data augmentation based on deep learning. 2021 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Chounburi, Thailand. pp. 197–201. DOI: 10.1109/KST51265.2021.9415827
  24. Pouromran, F.; Radhakrishnan, S.; Kamarthi S. (2021). Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS One. 16(7). DOI: 10.1371/journal.pone.0254108
  25. Lo Presti, L.; La Cascia, M. (2017). Boosting hankel matrices for face emotion recognition and pain detection. Computer Vision and Image Understanding. 156, pp.19–33. DOI: 10.1016/J.CVIU.2016.10.007
  26. Rathee, N.; Ganotra, D. (2015). A novel approach for pain intensity detection based on facial
  27. feature deformations. Journal of Visual Communication and Image Representation. 33, pp. 247 -254. DOI: 10.1016/J.JVCIR.2015.09.007
  28. Rodriguez, P.; Cucurull, G.; González, J.; Gonfaus, J. M.; Nasrollahi, K.; Moeslund, T. B.; Roca, F. X. (2022). Deep pain: Exploiting long short-term memory networks for facial expression classification. IEEE Transactions on Cybernetics. 52(5), pp. 3314-3324. DOI: 10.1109/TCYB.2017.2662199
  29. Rojo, R.; Prados-Frutos, J. C.; López-Valverde, A. (2015). Pain assessment using the facial action coding system. A systematic review. Medicina Clínica (English Edition). 145(8), pp. 350–355. DOI: 10.1016/j.medcli.2014.08.010
  30. Roy, S. D.; Bhowmik, M. K.; Saha, P.; Ghosh, A. K. (2016). An approach for automatic pain detection through facial expression. Procedia Computer Science. 84, pp. 99–106. DOI:10.1016/j.procs.2016.04.072
  31. Rupenga, M.; Vadapalli, H. B. (2016). Automatic spontaneous pain recognition using supervised classification learning algorithms. 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), South Africa, Stellenbosch. IEEE. pp. 1-6. DOI:10.1109/ROBOMECH.2016.7813150
  32. Siqueira, S. R. D. T.; de Siqueira, J. T. T. T.; Teixeira, M. J. (2020). Chronic pain, somatic unexplained complaints and multimorbidity: A mutimorbidity painful syndrome?. Medical Hypotheses. 138, p. 109598. DOI: 10.1016/j.mehy.2020.109598.
  33. Stahlschmidt, L.; Friedrich, Y.; Zernikow, B.; Wager, J. (2018). Assessment of pain-related disability in pediatric chronic pain: A comparison of the functional disability inventory and the pediatric pain disability index. Clinical Journal of Pain. 34 (2), pp. 1173-1179. DOI: 10.1097/AJP.0000000000000646
  34. Subramaniam, S. D.; Dass, B. (2021). Automated nociceptive pain assessment using physiological signals and a hybrid deep learning network. IEEE Sensors Journal. 21(3), pp. 3335–3343. DOI: 10.1109/JSEN.2020.3023656.
  35. Susam, B.; Akcakaya, M.; Nezamfar, H.; Diaz, D.; Xu, X.; de Sa, V.; Craig, K.; Huang, J.; Goodwin, M. (2018). Automated pain assessment using electrodermal activity data and machine learning. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA. IEEE Sensors Journal, pp. 372–375. DOI: 10.1109/JSEN.2020.3023656.
  36. Susam, B. T.; Riek, N. T.; Akcakaya, M.; Xu, X.; de Sa,, V. R.; Nezamfar, H.; Diaz, D.; Craig, K. D.; Good-win, M. S.; Huang, J. S. (2022). Automated pain assessment in children using electrodermal activity and video data fusion via machine learning. IEEE Transactions on Biomedical Engineering. 69(1), pp. 422–431. DOI: 10.1109/TBME.2021.3096137
  37. Thiam, P.; Hihn, H.; Braun, D.A.; Kestler, H.A.; Schwenker, F. (2021). Multi-modal pain intensity assessment based on physiological signals: A deep learning perspective. Frontiers in Physiology. 12. https://doi.org/10.3389/fphys.2021.720464
  38. Van, A. J.; Van den, W. (2015). The misuse of prescription opioids: A threat for Europe? Current Drug Abuse Reviews, 8(1), pp. 3–14. DOI: 10.2174/187447370801150611184218
  39. Wang, R.; Xu, K.; Feng, H.; Chen, W. (2020). Hybrid RNN-ANN based deep physiological network for pain recognition. 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada. Institute of Electrical and Electronics Engineers (IEEE), pp. 5584–5587. DOI: 10.1109/EMBC44109.2020.9175247.
  40. Wong, T.T.; Yeh, P.Y. (2020). Reliable accuracy estimates from fold cross validation. IEEE Transactions on Knowledge and Data Engineering. 32(8):1586–1594. DOI: 10.1109/TKDE.2019.2912815
  41. Yang, F.; Banerjee, T.; Panaggio, M. J.; Abrams, D. M.; Shah, N.R. (2019). Continuous pain assessment using ensemble feature selection from wearable sensor data. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, Institute of Electrical and Electronics Engineers (IEEE), pp. 569–576. DOI: 10.1109/BIBM47256.2019.8983282