Skip to main navigation menu Skip to main content Skip to site footer

Covid 19 quarantine’s effects on air quality in Bogota and twenty cities world wide statistical analysis (january to july 2020)

Análisis estadístico de los efectos de la cuarentena por covid 19 en la calidad del aire de Bogotá y 20 ciudades del mundo (enero a julio de 2020)



Open | Download


Section
Articles

How to Cite
Covid 19 quarantine’s effects on air quality in Bogota and twenty cities world wide statistical analysis (january to july 2020). (2023). Revista EIA, 20(40), 4021 pp. 1-33. https://doi.org/10.24050/reia.v20i40.1701

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Gustavo Andrés Rincón Rueda

Objective: to compare air pollution’s behavior during quarantine in the city of Bogota, in regard to other cities in the world in aspects such as population, area, among others, through a statistical analysis of the concentration data of pollutants PM10, PM2.5 and NO2, for the period from January to July 2020.

Materials and methods: 20 cities were selected according to the matrix for the study. Using the BOOTSTRAPPING technique, a correlation matrix and histograms were made for each of the pollutants per phase. For the application of the PCA, the analysis was carried out using MATLAB software, with respect to the averages per phases and change magnitudes. SPSS software was used to normalize the data for the treatment of the variables of interest. Making use of ARIMA and ETS modeling, the data were analyzed longitudinally, the forecast of concentrations with and without quarantine, including the comparison between cities.

Results: In the reactivation phase, Bogota presented a significant increase in its pollution levels, especially in PM10. In the differences between the phases before and reactivation, Bogota obtained a lower magnitude in the case of PM2.5, while for NO2 it was more remarkable.

Conclusions: In the quarantine, Bogota experienced a significant decrease in the concentration of PM10 and NO2. This was not the case for PM2.5 concentration due to different temporary events (fires and particulate matter transportation).


Article visits 226 | PDF visits 183


Downloads

Download data is not yet available.
  1. Academia Nacional de Medicina de México. (2015). La contaminación del aire y los problemas respiratorios. Revista Facultad de Medicina de México, 58(5).
  2. ACEA, Alliance, EMA, & JAMA. (2019). Gasoline and diesel fuel. World-wide fuel charter. Sexta edición, 105 p.
  3. Alcaldía mayor de Bogotá D.C. (2021). Pandemia y crimen en el Distrito. Oficina de Análisis de Información y Estudios Estratégicos, 30 p.
  4. Blanca, M. J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. (2017). Datos no normales: ¿es el ANOVA una opción válida?. Psicothema, 29(4), pp. 552–557 https://doi.org/10.7334/psicothema2016.383
  5. Bravo-Calle, O. E.; Osorio-Rivera, M. A.; Loor-Lalvay, X. A. (2021). La calidad del desarrollo industrial y su impacto en el medio ambiente. Polo del conocimiento, 6 (9), pp. 153-166 DOI: 10.23857/pc.v6i9
  6. CEPAL. (2020). Efectos de las cuarentenas y restricciones de actividad relacionadas con el COVID-19 sobre la calidad del aire en las ciudades de América Latina, Naciones Unidas, 13 p.
  7. Farrow, A.; Anhäuser, A.; Chen, Y.; Cespedes, T. (2022). La carga de la contaminación del aire en Bogotá, Colombia 2021. Greenpeace, 16 p.
  8. Gaitán, M.; Cancino, J.; Behrentz, E. (2007). Análisis del estado de la calidad del aire en Bogotá. Revista De Ingeniería, 1(26), pp. 81–92 https://doi.org/10.16924/revinge.26.10
  9. Gaviria-G, C. F.; Muñoz-M, J. C.; González, G. J. (2012). Contaminación del aire y vulnerabilidad de individuos expuestos: un caso de estudio para el centro de Medellín. Revista Facultad Nacional de Salud Pública, 30(3), pp. 316-327 DOI: https://doi.org/10.17533/udea.rfnsp.10507
  10. González-Castillo, Y. A. (2021). Evaluación del impacto en la calidad del aire generado por el aislamiento preventivo como medida frente al COVID-19 en tres ciudades de Colombia. Universidad Nacional de Colombia.
  11. IBM. (2013). IBM SPSS Bootstrapping 22. https://www.sussex.ac.uk/its/pdfs/SPSS_Bootstrapping_22.pdf
  12. Jollife, I. T.; Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 16 p https://doi.org/10.1098/rsta.2015.0202
  13. Manisalidis, I.; Stavropulou, E.; Stavropoulos, A.; Bezirtzoglou, E. (2020). Impactos ambientales y de salud de la contaminación del aire. Frontiers in Public Health, 8, 13 p https://doi.org/10.3389/fpubh.2020.00014.
  14. Martínez-García, N. (2020). Impacto de las medidas preventivas contra el COVID-19 en la calidad del aire de la ciudad de Bogotá D.C.: Análisis de las concentraciones de NOx (Tesis de pregrado), Bogotá, Universidad de los Andes, Colombia, p. 17
  15. Molano-Guzman, L. G.; Díaz-Álvarez, C. J. (2019). Análisis y verificación del modelo gaussiano de dispersión: métodos teóricos y experimentales. Revista de investigación, 12 (1), pp. 31 - 43.
  16. Montealegre-Esmeral, L.; Pulido-Iriarte, T.; Amador-Rodero, E.; Monery-Ramos, N.; Bohorquez-Prada, A.; Paez-Duran, D.; Arrieta-Rico, O. (2021). Impacto de la contaminación atmosférica en la frecuencia de las enfermedades cardiovasculares, cerebrovasculares y respiratorias. Revista South Florida Journal of Development, 2 (2), pp. 1897-1914 DOI: 10.46932/sfjdv2n2-060
  17. Muhammad, S.; Long, X.; Muhammad., S. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise?. Science of The Total Environment, 728, 5 p https://doi.org/10.1016/j.scitotenv.2020.138820
  18. OMS. (2021). Las nuevas Directrices mundiales de la OMS sobre la calidad del aire tienen como objetivo evitar millones de muertes debidas a la contaminación del aire. Copenhague y Ginebra. https://www.who.int/es/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution#:~:text=Se%20calcula%20que%20cada%20a%C3%B1o,de%20a%C3%B1os%20de%20vida%20saludable
  19. OMS. (2018). Nueve de cada diez personas de todo el mundo respiran aire contaminado. https://www.who.int/es/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
  20. ONU. (2020). El coronavirus puede disminuir la economía mundial en casi un 1% este año. https://news.un.org/es/story/2020/04/1472142
  21. Valenzuela, S. (2020). Calidad del aire en cuarentena: Un balance con expertos. CODS Uniandes. https://cods.uniandes.edu.co/calidad-aire-cuarentena-covid19-colombia/