Skip to main navigation menu Skip to main content Skip to site footer

STUDY OF TELECONNECTIONS: THE WATER SUPPLY OF SANTA MARTA CITY ITS SUPPLYING BASINS VERSUS MACRO CLIMATIC PHENOMENA

Estudio De Teleconexiones: Oferta Hídrica En Santa Marta Versus Fenómenos Macroclimáticos.



Open | Download


Section
Articles

How to Cite
STUDY OF TELECONNECTIONS: THE WATER SUPPLY OF SANTA MARTA CITY ITS SUPPLYING BASINS VERSUS MACRO CLIMATIC PHENOMENA. (2024). Revista EIA, 21(41), 4107 pp. 1-19. https://doi.org/10.24050/reia.v21i41.1721

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Rafael Bolivar
Yulia Ivanova

In recent years, episodes of reduced water availability have occurred in the supplying basins of the city of Santa Marta, leading to a scarcity of water resources. This study delves into understanding the sensitivity of water supply to the macro-climatic phenomena of ENSO (El Niño-Southern Oscillation) and QBO (Quasi-Biennial Oscillation). To assess their influence, teleconnections were established through correlational analysis between hydro climatological series and macroclimatic indices, with statistical significance evaluated using the Student’s t-test. The obtained results indicate that the ENSO phenomenon has a statistically significant impact on the hydro-meteorological regime of the area. During the warm phase of the event, there is an increase in average temperatures and a decrease in water availability in the Manzanares and Piedras river basins. Conversely, the Gaira River basin experiences increased water availability due to the melting of the glaciers in the Sierra Nevada de Santa Marta caused by rising temperatures, resulting in an increase in runoff. Given the proximity of the study area to the Pacific Ocean, where the ENSO phenomenon originates, the macro-climatic signal manifests on the hydroclimatic regime during the same month. On the other hand, the analysis of teleconnections between hydro-meteorological variables and the Quasi-Biennial Oscillation event revealed that there is no statistically significant relationship between these variables. This indicates that the water regime is not dependent on this macro-climatic phenomenon. In conclusion, the water regime in the supplying basins of the city of Santa Marta is influenced by ENSO to a degree of 17 to 33%, and the lack of hydrological monitoring in one of the basins makes the city’s water supply system vulnerable. Therefore, it is proposed to conduct a study for instrumenting the basins to establish an efficient monitoring system for proper water resource management and city water supply


Article visits 185 | PDF visits 143


Downloads

Download data is not yet available.
  1. Abhik, S.H.; Hope, P.; Hendon, H.H.; Hutley, L.B.; Johnson, S.; Drosdowsky, W.; Brown, J.R.; Duke, N.C. (2021) Influence of the 2015–2016 El Niño on the recordbreaking mangrove dieback along northern Australia coast. Scientific Reports, 11. https://dx.doi.org/10.1038/s41598-021-99313-w
  2. Alarcón, N.G.; Cerrato, I. (2020). ¿Ya tenemos suficientes apps? BID. https:// blogs.iadb.org/conocimiento-abierto/es/ya-tenemos-suficientes-apps/ (La referencia no hace parte del texto)
  3. ANAME (2023). Equipos de Medicion de Fuerza y Torsion: Torquímetros y Dinamómetros. Sistemas de Medida Fricción: https://www. medidafuerzaytorsion.com/index.php/es/equipos-de-medicion/category/52medida-de-friccion?jjj=1688443361957
  4. Bal, P. K.; Dasari, H.P.; Prasad, N.; Salunke, P.; Parihar, R.S. (2021). Variations of Energy Fluxes with ENSO, IOD and ISV of Indian Summer Monsoon Rainfall over the Indian Monsoon Region. Atmospheric Research, 258. https://dx.doi. org/10.1016/j.atmosres.2021.105645
  5. Barrios-Perez, C.; Okada, K.; Varón, G.G.; Ramirez-Villegas, J.; Rebolledo, M.C.; Prager, S.D. (2021). How does El Niño Southern Oscillation affect rice-producing environments in central Colombia? Agricultural and Forest Meteorology, 306.
  6. Berniell, L.; de la Mata, D. (2021). Covid-19 y desigualdad: ¿Se agrandarán las brechas sociales en América Latina y el Caribe?. CAF. https://www.caf.com/es/ conocimiento/visiones/2021/12/covid19-y-desigualdad-se-agrandaran-lasbrechas-sociales-en-america-latina-y-el-caribe/
  7. Bolaño-Ortiz, T. R.; Diaz-Gutiérrez, V.L.; Camargo-Caicedo, Y. (2020). ENSO and light-absorbing impurities and their impact on snow albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences, 21. https://dx.doi.org/10.3390/ geosciences10110437
  8. Boneth, S. D. (02 de 06 de 2020). Hallan más de 100 conexiones fraudulentas en acueducto de Santa Marta. EL HERALDO.
  9. Das, K.M.; Mukherjee, A.; Malakar, P.; Das, D.; Dey, U. (2021). Impact of global-scale hydroclimatic patterns on surface water-groundwater interactions in the climatically vulnerable Ganges river delta of the Sundarbans. Science of The Total Environment, 10. https://dx.doi.org/10.1016/j.scitotenv.2021.149198
  10. Dey, A.; Chattopadhyay, R.; Joseph, S,M Kaur, M.; Mandal, R.; Phani, R.; Sahai, K.; Pattanaik, D.R. (2022). The intraseasonal fluctuation of Indian summer monsoon rainfall and its relation with monsoon intraseasonal oscillation
  11. (MISO) and Madden Julian oscillation (MJO). Theoretical and Applied Climatology, 13. https://dx.doi.org/10.1007/s00704-022-03970-4
  12. Fowler, A.M.; Bridge, M.C. (2017). Empirically-determined statistical significance of the Baillie and Pilcher (1973) t statistic for British Isles oak. Dendrochronologia, 42. https://dx.doi.org/10.1016/j.dendro.2016.12.006
  13. Gonzalez, A.R. (2007). Manual de estadisticas aplicado a las ciencias de la educacion. Bogota: Javegraf.
  14. Habtegebreal, A.K.; Alemu, A.B.; Raju, U.J.P. (2021) Examining the Role of Quasibiennial Oscillation on Rainfall patterns over Upper Blue Nile Basin of Ethiopia. Environmental Science, 14.
  15. Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. (2020) Annual and interannual complementarities of renewable energy sources in Colombia. Renewable and Sustainable Energy Reviews, 134. https://dx.doi.org/10.1016/j. rser.2020.110318
  16. Ibrahim, I.; Usman, M.T. (2021). Teleconnection of spatial variations of effective onset of rainfall and ENSOIOD over savanna zones of Nigeria. Theor Appl Climatol, 185. https://dx.doi.org/10.1007/s00704-021-03619-8
  17. Jin, M.; Deng, F.; Liu, C.; Yu, Q.; Zhao, J.; & Wang, Q. (2020). Statistical Multi-Faults Localization Strategy of Switch Open-Circuit Fault for Modular Multilevel Converters Using Grubbs Criterion. IECON Proceedings, 15. https://dx.doi. org/10.1109/IECON43393.2020.9254519
  18. Lejeune, Y.; Wagnon, P.; Bouilloud, L.; Chevallier, P.; Etchevers, P.; Martin, E.; Sicart, J.E.; Habets, F. (2007). Melting of Snow Cover in a Tropical
  19. Mountain Environment in Bolivia: Processes and Modeling. JOURNAL OF
  20. HYDROMETEOROLOGY, pág. 937. https://dx.doi.org/10.1175/JHM590.1
  21. Ncoyini, Z.; Savage, M.J.; Strydom, S. (2022). Limited access and use of climate information by small-scale sugarcane farmers in South Africa: A case study. Climate Services, 11. https://dx.doi.org/10.1016/j.cliser.2022.100285
  22. Puspasari, R.; Rahmawati P.F.; Prianto, E. (2021). The Effect of ENSO (El Nino Southern Oscillation) phenomenon on Fishing Season of Small Pelagic Fishes in Indonesia Waters. Earth Environ, 11. https://dx.doi.org/10.1088/1755-1315/934/1/012018
  23. Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Guillet, S.; Madrigal-González, j.; Stoffel, M. (2020). Neotropical Hypericum irazuense shrubs reveal recent ENSO variability in Costa Rican páramo. Dendrochronologia, 10. https://dx.doi.org/10.1016/j.dendro.2020.125704
  24. Superserintendencia de Servicios Públicos Domiciliarios. (2015). Evaluación integral de prestadores compañoa de acueducto y alcantarillado metropolitano de Santa Marta S.A. E.S.P. Bogota: Superintendencia delegada para acueducto, alcantarillado y aseo.
  25. Veiga, S. F. (2022). The response of the East Asian summer rainfall to more extreme El Niño events in future climate scenarios. Atmospheric Research, 268.
  26. Wang, Y.; Wang, S.; Zhao, W.; Liu, Y. (2022). The increasing contribution of potential evapotranspiration to severe droughts in the Yellow River basin. Journal of Hydrology, 14. https://dx.doi.org/10.1016/j.jhydrol.2021.127310
  27. Yi, Y.; Liu, S.; Zhu, Y.; Wu, K.; Xie, F.; Saufullah, M. (2021). Spatiotemporal heterogeneity of snow cover in the central and western Karakoram Mountains based on a refined MODIS product during 2002–2018. Atmospheric Research, 250. https://dx.doi.org/10.1016/j.atmosres.2020.105402