Biodegradación de clorpirifos por medio de microbiota autoctona de un embalse de agua potable
Biodegradation of chlorpyrifos by autochthonous microbiota from a drinking water reservoir


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
El clorpirifos, es un plaguicida aplicado ampliamente en actividades agrícolas.
Esta sustancia, puede ser transportado desde el suelo a las aguas superficiales e incluso
a las subterráneas por medio de lixiviación y escorrentía debido a las interacciones
fisicoquímicas suelo-sustancia. Una vez en los compartimentos ambientales, el
clorpirifos puede transformarse mediante reacciones bióticas y abióticas, lo que
aumenta los efectos complejos y múltiples sobre la biota. Asi, la biodegradación es
una reacción natural importante que reduce los niveles ambientales de plaguicidas y
por lo tanto, la microbiota autóctona con alto potencial de biotransformación podría
estar relacionada con la persistencia y dinámica del clorpirifos. En este studio, se
amnalizó la biodegradación de clorpirifos por medio de microbiota autóctona en
agua natural de un embalse. En las muestras se detectaron indicadores bacterianos
como Pseudomonas aeruginosa, Escherichia coli y coliformes totales utilizando
medio de cultivo selectivo y medio de cultivo diferencial, tales como Pseudalert y
Colilert. En medio acuoso con microbiota autóctona, el clorpirifos se transformó en
3,5,6-tricloro-2-piridinol (TCP), y la vida media se estimó en 10,2 h. Los resultados
mostraron que estos indicadores bacterianos en el embalse pueden reducir los
niveles de clorpirifos en el cuerpo de agua, pero aún se desconoce si el metabolito
TCP emerge en el cuerpo de agua con efectos acuáticos.
Article visits 142 | PDF visits 104
Downloads
- Arbeli, Z., & Fuentes, C. L. (2007). Accelerated biodegradation of pesticides: An overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. In Crop Protection (Vol. 26, Issue 12, pp. 1733–1746). https://doi.org/10.1016/j.cropro.2007.03.009
- Bay Liu, C. B., McConnell, L., & Torrents, A. (2001). Hydrolysis of chlorpyrifos in natural waters of the. www.elsevier.com/locate/chemosphere
- Bootharaju, M. S., & Pradeep, T. (2012). Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir, 28(5), 2671–2679. https://doi.org/10.1021/la2050515
- Caldwell, S. R., & Raushel, F. M. (1991). Detoxification of Organophosphate Pesticides Using a Nylon Based Immobilized Phosphotriesterase from Pseudomonas dirninuta. In Applied Biochemistry and Blotechnology (Vol. 59).
- Corcellas, C., Eljarrat, E., & Barceló, D. (2015). First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environment International, 75, 110–116. https://doi.org/10.1016/j.envint.2014.11.007
- Correa Zuluaga, S., Ramos Contreras, C. D., Tangarife Ramírez, J. C., Narváez Valderrama, J. F., López Córdoba, C., & Molina Pérez, F. J. (2018). Potencial de lixiviación del Clorpirifos en un Entisol colombiano. Revista EIA, 15(29), 47–58. https://doi.org/10.24050/reia.v15i29.1226
- Cycoń, M., Wójcik, M., & Piotrowska-Seget, Z. (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76(4), 494–501. https://doi.org/10.1016/j.chemosphere.2009.03.023
- Dumas, D. P., Caldwell, S. R., Wild, J. R., & Raushel, F. M. (1989). Purification and properties of the phosphotriesterase from Pseudomonas diminuta. Journal of Biological Chemistry, 264(33), 19659–19665. https://doi.org/10.1016/s0021-9258(19)47164-0
- Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. www.sciencemag.org
- Holger, ¨, Koch, M., & Angerer, J. (2001). Analysis of 3,5,6-trichloro-2-pyridinol in urine samples from the general population using gas chromatography-mass spectrometry after steam distillation and solid-phase extraction. In Journal of Chromatography B. www.elsevier.com/locate/chromb
- Kumar, S., Muketji, K. G., & La13, R. (1996). Molecular Aspects of Pesticide Degradation by Microorganisms. In Criricnl Reviews in Microbiology (Vol. 22, Issue 1).
- Liu, W. X., Wang, Y., He, W., Qin, N., Kong, X. Z., He, Q. S., Yang, B., Yang, C., Jiang, Y. J., Jorgensen, S. E., & Xu, F. L. (2016). Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu). Ecological Indicators, 60, 335–345. https://doi.org/10.1016/j.ecolind.2015.06.026
- Lu, P., Li, Q., Liu, H., Feng, Z., Yan, X., Hong, Q., & Li, S. (2013). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresource Technology, 127, 337–342. https://doi.org/10.1016/j.biortech.2012.09.116
- Munnecke, D. M. (1979). Hydrolysis of Organophosphate Insecticides by an Immobilized-Enzyme System.
- Narváez Valderrama, J. F., Berrio Puerta, J., Correa Zuluaga, S., Baena Palacio, J. A., & Molina Pérez, F. J. (2014). Degradación hidrolítica de clorpirifos y evaluación de la toxicidad del extracto hidrolizado con Daphnia pulex.
- Narvaez Valderrama, J. F., Correa Gil, V., Alzate B, V., Tavera, E. A., Noreña, E., Porras, J., Quintana-Castillo, J. C., García L, J. J., Molina P, F. J., Ramos-Contreras, C., & Sanchez, J. B. (2022). Effects of polycyclic aromatic hydrocarbons on gestational hormone production in a placental cell line: Application of passive dosing to in vitro tests. Ecotoxicology and Environmental Safety, 245. https://doi.org/10.1016/j.ecoenv.2022.114090
- Narvaez Valderrama, J. F., González, J. D., Porras, J., & Molina, F. J. (2023). Field Calibration of Semipermeable Membrane Devices (SPMDs) for Persistent Organic Pollutant Monitoring in a Reservoir. 15. https://doi.org/10.3390/xxxxx
- Narváez Valderrama, J. F., Palacio Baena, A. J., & Molina Pérez, F. J. (2012). Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes.
- Nawab, A., Aleem, A., & Malik, A. (2003). Determination of organochlorine pesticides in agricultural soil with special reference to c-HCH degradation by Pseudomonas strains.
- Racke, K. D., Steele, K. P., Yoder, R. N., Dick, W. A., & Avidov, E. (1996). Factors Affecting the Hydrolytic Degradation of Chlorpyrifos in Soil.
- Ramírez, D. G., Narváez Valderrama, J. F., Palacio Tobón, C. A., García, J. J., Echeverri, J. D., Sobotka, J., & Vrana, B. (2023). Occurrence, sources, and spatial variation of POPs in a mountainous tropical drinking water supply basin by passive sampling. Environmental Pollution, 318. https://doi.org/10.1016/j.envpol.2022.120904
- RANI, N. L., & LALITHAKUMAR. (2010). Degradation of methyl parathion by Pseudomonas putida AND. www.nrcresearchpress.com
- Ríos-Sossa, R., García-Londoño, J. J., Gil-Ramírez, D., Patiño, A. C., Cardona-Maya, W. D., Quintana-Castillo, J. C., & Narváez-Valderrama, J. F. (2022). Assessment of Levonorgestrel Leaching in a Landfill and Its Effects on Placental Cell Lines and Sperm Cells. Water (Switzerland), 14(6). https://doi.org/10.3390/w14060871
- Wang, X., Jia, R., Song, Y., Wang, M., Zhao, Q., & Sun, S. (2019). Determination of pesticides and their degradation products in water samples by solid-phase extraction coupled with liquid chromatography-mass spectrometry. Microchemical Journal, 149. https://doi.org/10.1016/j.microc.2019.104013
- Zhang, Y., Hou, Y., Chen, F., Xiao, Z., Zhang, J., & Hu, X. (2011). The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway. Chemosphere, 82(8), 1109–1115. https://doi.org/10.1016/j.chemosphere.2010.11.081