Predictive analytics for policymakers: Time-series forecasting for mental health
Analítica predictiva como apoyo en la salud pública: Modelos de pronóstico en salud mental con series de tiempo


This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright statement
The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.
Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.
Show authors biography
Mental health has been declared by the World Health Organization (WHO) as a matter of concern in international public health. In Colombia, specifically, the importance of mental health care, including the phenomenon of suicide, has been highlighted. In this regard, policymakers have sought alternatives to address or mitigate this issue. In this context, research becomes relevant regarding the development of tools that facilitate decision-making for governmental authorities, for example, through the formulation of forecasting models that enable the identification of trends and patterns of behaviour of suicide attempts.
This paper contributes to this gap for the particular case of suicide attempts in the city of Medellín, Colombia, through the use of prescriptive analytics. This paper presents the fitting, validation and comparison of three different time series models, under minimum forecast error criteria. The compared models include parametric, Holt-Winters and Box-Jenkins approximations; and it is identified that, for the analysed data, the parametric model with cubic, seasonal and ARMA(0.5) components is the one with the lowest forecast error. The results indicate that this model manages to capture the trends of the phenomenon, and that it has a low level of error for the projection for nearby trends, but that it does not manage to respond to sudden changes in structure such as those that occurred in the COVID-19 pandemic.
Article visits 190 | PDF visits 142
Downloads
- Aguilar Sigueñas, L.E., 2022. Un Modelo Predictivo de la Ideación Suicida Basado en Depresión, Ansiedad, Estrés y Funcionalidad Familiar en Internos de Medicina, 2021. Trujillo.
- Alcaldía de Medellín, 2020. Unidad de Gestión de la Información y el Conocimiento [WWW Document]. Intentos de suicidio. URL http://medata.gov.co/dataset/intento-de-suicidio (accessed 1.14.24).
- American Foundation for Suicide Prevention, 2023. Suicide statistics [WWW Document]. URL https://afsp.org/suicide-statistics/ (accessed 1.14.24).
- Boonkwang, K., Kasemvilas, S., Kaewhao, S., Youdkang, O., 2018. A Comparison of Data Mining Techniques for Suicide Attempt Characteristics Mapping and Prediction, in: 2018 International Seminar on Application for Technology of Information and Communication. IEEE, pp. 488–493. https://doi.org/10.1109/ISEMANTIC.2018.8549835
- Cardona Arango, D., Medina-Pérez, Ó.A., Cardona Duque, D.V., 2016. Caracterización del suicidio en Colombia, 2000-2010. Rev Colomb Psiquiatr 45, 170–177. https://doi.org/10.1016/j.rcp.2015.10.002
- Chen, Q., Zhang-James, Y., Barnett, E.J., Lichtenstein, P., Jokinen, J., D’Onofrio, B.M., Faraone, S. V., Larsson, H., Fazel, S., 2020. Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data. PLoS Med 17. https://doi.org/10.1371/journal.pmed.1003416
- Fernandez Villacreses, C.P., 2020. Análisis estadístico para identificar factores que influyen en la conducta suicida en drogodependientes. Guayaquil.
- Fonseka, T.M., Bhat, V., Kennedy, S.H., 2019. The utility of artificial intelligence in suicide risk prediction and the management of suicidal behaviors. Australian & New Zealand Journal of Psychiatry 53, 954–964. https://doi.org/10.1177/0004867419864428
- Gómez Tabares, A.S., Núñez, C., Caballo, V.E., Agudelo Osorio, M.P., Grisales Aguirre, A.M., 2019. Predictores psicológicos del riesgo suicida en estudiantes universitarios. Behavioral Psychology / Psicología Conductual 27, 391–413.
- Linthicum, K.P., Schafer, K.M., Ribeiro, J.D., 2019. Machine learning in suicide science: Applications and ethics. Behavioral Sciences & the Law 37, 214–222. https://doi.org/10.1002/bsl.2392
- Madyatmadja, E.D., Jordan, S.I., Andry, J.F., 2021. Big data analysis using rapidminer studio to predict suicide rate in several countries. ICIC Express Letters, Part B: Applications 12, 757–764. https://doi.org/10.24507/icicelb.12.08.757
- Medellín Cómo vamos, 2021. Informe de Calidad de Vida de Medellín 2020. Medellín.
- Ministerio de Salud y Protección Social, 2021. Estrategia Nacional para la Prevención de la Conducta Suicida en Colombia. Bogotá.
- Ministerio de Salud y Protección Social, 2018a. Boletín de salud mental Conducta suicida Subdirección de Enfermedades No Transmisibles. Bogotá.
- Ministerio de Salud y Protección Social, 2018b. Resolución 4886 de 2018. Bogotá.
- Ministerio de Salud y Protección Social, n.d. Bodega de Datos SISPRO (SGD) [WWW Document]. URL https://rssvr2.sispro.gov.co/ObsSaludMental/ (accessed 1.14.24).
- Organización Mundial de la Salud, 2022a. Plan de acción integral sobre salud mental 2013-2030. Organización Mundial de la Salud.
- Organización Mundial de la Salud, 2022b. Salud mental: fortalecer nuestra respuesta [WWW Document]. URL https://www.who.int/es/news-room/fact-sheets/detail/mental-health-strengthening-our-response (accessed 1.14.24).
- Organización Mundial de la Salud, 2021. Una de cada 100 muertes es por suicidio [WWW Document]. URL https://www.who.int/es/news/item/17-06-2021-one-in-100-deaths-is-by-suicide (accessed 1.14.24).
- Our World in Data, 2022. Suicide rate 2019 [WWW Document]. URL https://ourworldindata.org/grapher/death-rate-from-suicides-gho (accessed 1.14.24).
- Quito Yanquen, L.C., Pinzón Choque, C.G., 2021. Modelo de pronóstico de casos de suicidios en la ciudad de Bogotá D.C. Fundación Universitaria Los Libertadores, Bogotá D.C.
- Schafer, K.M., Kennedy, G., Gallyer, A., Resnik, P., 2021. A direct comparison of theory-driven and machine learning prediction of suicide: A meta-analysis. PLoS One 16, e0249833. https://doi.org/10.1371/journal.pone.0249833
- Secretaría de Salud de Bogotá, 2022. Tasa de suicidio en Bogotá D.C. [WWW Document]. SaluData Observatorio de Bogotá. URL https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/salud-mental/suicidio/ (accessed 1.14.24).
- Shumway, R.H., Stoffer, D.S., 2011. Time Series Analysis and Its Applications, 3rd ed, Springer Texts in Statistics. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4419-7865-3
- Vanegas, G., 2022. Cada 20 minutos hay un intento de suicidio en Colombia: “Derrumbar mitos puede salvar vidas.” EL PAIS.