Skip to main navigation menu Skip to main content Skip to site footer

Síntesis y caracterización del superconductor Eu3Ba5Cu8O18-δ dopado con 0.1% de óxido de Grafeno

Synthesis and characterization of Eu3Ba5Cu8O18-δ superconductor doped with 0.1% Graphene oxide



Open | Download


Section
Articles

How to Cite
Síntesis y caracterización del superconductor Eu3Ba5Cu8O18-δ dopado con 0.1% de óxido de Grafeno. (2024). Revista EIA, 21(42), 4201 pp. 1-20. https://doi.org/10.24050/reia.v21i42.1785

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Sully Segura Peña
Luis Fernando Parra Suarez
Laura Natalia Ayala Sotelo
Maria Rosario Maldonado Cardenas
Julian David Segura Peña

Esta investigación presenta la síntesis y evaluación de las propiedades estructurales y morfológicas del superconductor Eu3Ba5Cu8O18-δ dopado con un 0.1% de óxido de grafeno, utilizando el método de reacción de estado sólido. El análisis estructural realizado en las muestras, tanto en la no dopada como en la dopada, permitió identificar la fase principal como Eu3Ba5Cu8O18-δ (Eu358), con estructura ortorrómbica y grupo espacial Pmm2(25), manteniendo propiedades superconductoras en ambos casos. Además, se observó que el dopaje con óxido de grafeno dio lugar a la formación de una fase minoritaria de EuBa4Cu3O9 (Eu143), con estructura cúbica y grupo espacial P23(195). En cuanto a la caracterización morfológica, se evidenció que la muestra no dopada presenta agregados conformados por granos de tamaño no uniforme, con un tamaño medio con un tamaño medio de aproximadamente 97 µm. En contraste, la muestra dopada con un 0.1% de óxido de grafeno exhibe mejoras significativas en la uniformidad y límites de los granos, con un tamaño medio de alrededor de 141 µm. Estos resultados confirman la obtención de Eu3Ba5Cu8O18-δ con una fase superconductora del 73%, superando los porcentajes reportados previamente utilizando el método de reacción de estado sólido.


Article visits 206 | PDF visits 247


Downloads

Download data is not yet available.
  1. Abdulrahman, M. W., & Hussain, F. I. (2019, July). Synthesis of Y3Ba5Cu8O18 superconductor by auto-combustion reaction. In AIP Conference Proceedings (Vol. 2123, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5117012
  2. Alviz Meza, A., Kafarov, V., & Y Peña Ballesteros, D. (2017, December). Study of the continuous corrosion in an oxidation environment derived from the theoretical combustion products in a refinery. Case study: ferritic steel ASTM A335 P91. In Journal of Physics Conference Series (Vol. 935, No. 1, p. 012057). DOI 10.1088/1742-6596/935/1/012057
  3. Aliabadi, A., Farshchi, Y. A., & Akhavan, M. (2009). A new Y-based HTSC with Tc above 100 K. Physica C: Superconductivity and its applications, 469(22), 2012-2014.
  4. DOI: https://doi.org/10.1016/j.physc.2009.09.003.
  5. Delamare, M. P., Walter, H., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Characterization of natural and artificial low-angle boundaries in YBCO TSMG samples. Physica C: Superconductivity, 329(3), 160-177. DOI: https://doi.org/10.1016/S0921-4534(99)00454-2
  6. Dadras, S., Dehghani, S., Davoudiniya, M., & Falahati, S. (2017). Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Materials Chemistry and Physics, 193, 496-500. DOI: https://doi.org/10.1016/j.matchemphys.2017.03.003
  7. Debessai, M., Matsuoka, T., Hamlin, J. J., Bi, W., Meng, Y., Shimizu, K., & Schilling, J. S. (2010, March). Pressure-induced superconductivity in europium metal. In Journal of Physics: Conference Series (Vol. 215, No. 1, p. 012034). IOP Publishing. DOI 10.1088/1742-6596/215/1/012034
  8. Dias, F. T., Oliveira, C. P. D., Vieira, V. D. N., Silva, D. L., Mesquita, F., Almeida, M. L. D., ... & Pureur, P. (2014, December). Magnetic irreversibility and zero resistance in granular Y358 superconductor. In Journal of Physics: Conference Series (Vol. 568, No. 2, p. 022009). IOP Publishing. DOI: 10.1088/1742-6596/568/2/022009
  9. Falahati, S., Dadras, S., & Mosqueira, J. (2019). Investigation of the magnetic and transport properties of YBa 2 Cu 3 O 7-δ high temperature superconductor doped with graphene oxide. Journal of Superconductivity and Novel Magnetism, 32, 3755-3760. DOI: https://doi.org/10.1007/s10948-019-05171-z
  10. Gadzhimagomedov, S. K., Palchaev, D. K., Gadzhiev, M. K., Murlieva, Z. K., Rabadanov, M. K., Saypulaev, P. M., ... & Rabadanova, A. E. (2021, May). Superconducting YBCO ceramics after exposure to a plasma flow to a mixture of argon and oxygen. In Journal of Physics: Conference Series (Vol. 1923, No. 1, p. 012007). IOP Publishing. DOI: 10.1088/1742-6596/1923/1/012007
  11. Gaona, I. S., Supelano, G. I., & Vargas, C. P. (2020). Determination of critical superconducting parameters based on the study of the magnetization fluctuations for RE3Ba5Cu8O18-δ (RE= Sm, Eu, Gd, Dy and Ho) ceramic superconductor system. Ceramics International, 46(8), 11530-11538. DOI: https://doi.org/10.1016/j.ceramint.2020.01.179
  12. Gholipour, S., Daadmehr, V., Rezakhani, A. T., Khosroabadi, H., Shahbaz Tehrani, F., & Hosseini Akbarnejad, R. (2012). Structural phase of Y358 superconductor comparison with Y123. Journal of superconductivity and novel magnetism, 25, 2253-2258. DOI:https://doi.org/10.1007/s10948-012-1611-4
  13. Guerrero, U. F., Rivera, A. M., Cuaspud, J. A., Munevar, J., & Vargas, C. A. (2021). Synthesis of the La 3 Ba 5 Cu 8 O 18-δ and Sm 3 Ba 5 Cu 8 O 18-δ superconductors by the combustion and solid-state reaction methods. Materials Research, 24.
  14. DOI: https://doi.org/10.1590/1980-5373-MR-2020-0366
  15. Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., ... & Torng, C. J. (1987). High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Physical review letters, 58(9), 911. DOI: https://doi.org/10.1103/PhysRevLett.58.911.
  16. JG, B. (1986). Possible highT_c super-conductivity in the Ba-La-Cu-O system. Z Physik B, 64, 189-193.DOI: https://doi.org/10.1007/BF01303701
  17. Kamarudin, A. N., Awang Kechik, M. M., Abdullah, S. N., Baqiah, H., Chen, S. K., Abdul Karim, M. K., ... & Talib, Z. A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~ δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. DOI: https://doi.org/10.3390/coatings12010091
  18. Kraus, W., & Nolze, G. (1996). POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of applied Crystallography, 29(3), 301-303. DOI:https://doi.org/10.1107/S0021889895014920
  19. Kumar, N., Das, S., Bernhard, C., & Varma, G. D. (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2. Superconductor Science and Technology, 26(9), 095008. DOI: 10.1088/0953-2048/26/9/095008
  20. Landínez Téllez, D. A., Cabrera Baez, M., & Roa-Rojas, J. (2012). Structure and conductivity fluctuations of the Y 3 Ba 5 Cu 8 O 18 superconductor. Modern Physics Letters B, 26(11), 1250067. DOI: https://doi.org/10.1142/S0217984912500674
  21. Momma, K., & Izumi, F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied crystallography, 41(3), 653-658. DOI:https://doi.org/10.1107/S0021889808012016
  22. Parra Vargas, C. A., Canaría-Camargo, C. C., Roa-Rojas, J., & Albino-Aguiar, J. (2021). Análisis estructural del sistema superconductor RE3Ba5Cu8O18 (RE= Dy, Gd, Ho, Sm, Y, Yb).
  23. DOI: https://doi.org/10.18257/raccefyn.1163
  24. Parra-Borda, J. A., Rojas-Cruz, F. G., Cruz-Pacheco, A. F., Segura-Peña, S., & Vargas, C. P. (2017, December). Structural and magnetic analysis of the Pr1. 5Eu1. 5Ba5Cu8O18 system. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012005). IOP Publishing. DOI: 10.1088/1742-6596/935/1/012005
  25. Pavan Kumar Naik, S., Santosh, M., & Swarup Raju, P. M. (2018). Structural and thermal validations of Y 3 Ba 5 Cu 8 O 18 composites synthesized via citrate sol-gel spontaneous combustion method. Journal of Superconductivity and Novel Magnetism, 31, 1279-1286. DOI: https://doi.org/10.1007/s10948-017-4306-z.
  26. Rekaby, M., Roumié, M., Abou-Aly, A. I., Awad, R., & Yousry, M. (2014). Magnetoresistance study of Y 3 Ba 5 Cu 8 O 18 superconducting phase substituted by Nd 3+ and Ca 2+ ions. Journal of Superconductivity and Novel Magnetism, 27, 2385-2395.DOI: https://doi.org/10.1007/s10948-014-2572-6
  27. Sahoo, B., Singh, A. K., & Behera, D. (2020). Graphene oxide modified superconducting and elastic parameters of YBCO superconductor. Materials Chemistry and Physics, 240, 122252. DOI: https://doi.org/10.1016/j.matchemphys.2019.122252Get rights and content
  28. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. DOIhttps://doi.org/10.1038/nmeth.2089
  29. Shoushtari, M. Z., Heidarzadeh, G., & Ghahfarokhi, S. M. (2018). An Investigation of Y 3 Ba 5 Cu 8 O 18 Doping with Ag Nanoparticles and Its Application as Superconductor. Journal of Superconductivity and Novel Magnetism, 31, 3475-3483. DOI: https://doi.org/10.1007/s10948-018-4581-3
  30. Slimani, Y., Hannachi, E., Azzouz, F. B., & Salem, M. B. (2018). Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics, 92, 5-12. DOI: https://doi.org/10.1016/j.cryogenics.2018.03.010
  31. Sahoo, B., Karmakar, S., & Behera, D. (2019, October). Improvement of critical parameters of YBCO superconductor by addition of graphene oxide. In AIP Conference Proceedings (Vol. 2162, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5130270
  32. Suan, M. S. M., Johan, M. R., & Siang, T. C. (2012). Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Physica C: Superconductivity, 480, 75-78. DOI: https://doi.org/10.1016/j.physc.2012.05.006.
  33. Supelano, G. I., Santos, A. S., & Vargas, C. P. (2014). Magnetic fluctuations on TR3Ba5Cu8Oδ (TR= Ho, Y and Yb) superconducting system. Physica B: Condensed Matter, 455, 79-81. DOI: https://doi.org/10.1016/j.physb.2014.07.050
  34. Tavana, A., & Akhavan, M. (2010). How T c can go above 100 K in the YBCO family. The European Physical Journal B, 73, 79-83. DOI:https://doi.org/10.1140/epjb/e2009-00396-7
  35. Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography, 34(2), 210-213. . DOI: https://doi.org/10.1107/S0021889801002242
  36. Topal, U., Akdogan, M., & Ozkan, H. (2011). Electrical and structural properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) superconductors. Journal of superconductivity and novel magnetism, 24, 2099-2102.DOI: https://doi.org/10.1007/s10948-011-1176-7
  37. Topal, U., & Akdogan, M. (2012). The Role of Oxygenation on Superconducting Properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) Compounds. Journal of superconductivity and novel magnetism, 25, 239-244. DOI:https://doi.org/10.1007/s10948-011-1285-3
  38. Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2010). The new superconductors of YBaCuO materials. Journal of superconductivity and novel magnetism, 23, 1377-1380.. DOI: https://doi.org/10.1007/s10948-010-0786-9.
  39. Walter, H., Delamare, M. P., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Melt-textured YBaCuO with high trapped fields up to 1.3 T at 77 K. Journal of Materials Research, 15(6), 1231-1234. DOI: https://doi.org/10.1557/JMR.2000.0175.
  40. Wei, K., Ing, K., Hamdan, M. S., Radiman, S., & Abd-Shukor, R. (2018). AC Susceptibility and superconducting properties of graphene added YBa 2 Cu 3 O 7− d. Journal of Superconductivity and Novel Magnetism, 31, 2699-2703. DOI:https://doi.org/10.1007/s10948-017-4536-0.
  41. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924. DOI: https://doi.org/10.1002/adma.201001068