Skip to main navigation menu Skip to main content Skip to site footer

CURVAS PARALELAS EXPLÍCITAS DE LAS CURVAS CÓNICAS NO DEGENERADAS PARA EL TORNEADO CNC DE LENTES Y ESPEJOS ASFÉRICO-CÓNICOS (EXPLICIT PARALLEL CURVES OF NON-DEGENERATE CONIC CURVES FOR THE TURNED CNC OF ASPHERIC-CONIC LENSES AND MIRRORS)

CURVAS PARALELAS EXPLÍCITAS DE LAS CURVAS CÓNICAS NO DEGENERADAS PARA EL TORNEADO CNC DE LENTES Y ESPEJOS ASFÉRICO-CÓNICOS (EXPLICIT PARALLEL CURVES OF NON-DEGENERATE CONIC CURVES FOR THE TURNED CNC OF ASPHERIC-CONIC LENSES AND MIRRORS)



Open | Download


Section
Articles

How to Cite
CURVAS PARALELAS EXPLÍCITAS DE LAS CURVAS CÓNICAS NO DEGENERADAS PARA EL TORNEADO CNC DE LENTES Y ESPEJOS ASFÉRICO-CÓNICOS (EXPLICIT PARALLEL CURVES OF NON-DEGENERATE CONIC CURVES FOR THE TURNED CNC OF ASPHERIC-CONIC LENSES AND MIRRORS). (2013). Revista EIA, 5(10), 31-43. https://eiaupgrade.metarevistas.org/index.php/reveia/article/view/208

DOI
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Juan Camilo Valencia

Juan Camilo Valencia,

Ingeniero de Producción y candidato a Magíster en Matemáticas Aplicadas, Universidad EAFIT. Profesor Asistente, Escuela de Ingeniería de Antioquia.

Álvaro Hernán Bedoya

Licenciado en Matemáticas y Física, Universidad de Antioquia. Candidato a Maestría en Matemáticas Aplicadas, Universidad EAFIT.

Este artículo presenta el método para obtener, en coordenadas cartesianas, las líneas curvas paralelas de las curvas cónicas no degeneradas, por métodos analíticos y numéricos. Se define el offset como una función paralela a la función original a una distancia r. El offset de una cónica es importante para los procesos de fabricación de mecanismos, lentes, espejos y moldes; especialmente en el torneado con control numérico computarizado (CNC) de superficies de revolución con secciones cónicas, usando buriles de diamante con punta de radio r. También se presenta una técnica refinada usando interpolación circular segmentaria para construir numéricamente el offset de una parábola, que también puede usarse como modelo para determinar el offset de la elipse y de la hipérbola.

Abstract: This paper presents the method to obtain, in Cartesian coordinates, the parallel curve lines of non-degenerate conical curves, by analytical and numerical methods. Offset is defined as parallel function to the original function to a distance r. Offset of a conic is important for the manufacturing processes of mechanisms, lenses, mirrors, and molds; especially in the turning with computerized numerical control (CNC) of surfaces of revolution with conical sections, using diamond tools of radio r. Also a refined tip technique using segmental circular interpolation to numerically construct the parabola offset is presented, that also can be used as model to determine offsets of ellipse and hyperbola.

 

 


Article visits 255 | PDF visits 165


Downloads

Download data is not yet available.