Skip to main navigation menu Skip to main content Skip to site footer

UN MODELO ELÉCTRICO DE ESTRUCTURAS ALGEBRAICAS (An ELECTRICAL MODEL OF ALGEBRAIC STRUCTURES)

UN MODELO ELÉCTRICO DE ESTRUCTURAS ALGEBRAICAS (An ELECTRICAL MODEL OF ALGEBRAIC STRUCTURES)



Open | Download


Section
Articles

How to Cite
UN MODELO ELÉCTRICO DE ESTRUCTURAS ALGEBRAICAS (An ELECTRICAL MODEL OF ALGEBRAIC STRUCTURES). (2014). Revista EIA, 10(20), 183-192. https://eiaupgrade.metarevistas.org/index.php/reveia/article/view/529

DOI
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Gabriel Poveda Ramos

Electrotecnia, Nacional School, California (Estados Unidos). Ingeniero eléctrico, Universidad Pontificia Bolivariana. Ingeniero químico de la Universidad Pontificia Bolivariana.Ingeniero electricista, Universidad del Valle. Magíster en Matemáticas Aplicadas
de la Universidad Nacional de Bogotá. Tecnólogo textil, Instituto Textil de Lodz, Polonia. Estudios de Economía Latinoamericana en INTAL, Buenos Aires (Argentina). PhD. en ingeniería, Universidad Pontificia Bolivariana.


Los libros y los cursos de Álgebra Abstracta (o Álgebra Moderna) definen y estudian varios tipos de estructuras algebráicas, como los grupos, los espacios vectoriales, los anillos, los ideales y los cuerpos (o campos) de racionalidad. Estas estructuras se definen y se analizan en términos de unas operaciones que se caracterizan mediante propiedades que se presentan como salidas de la nada y que en realidad son solamente inferidas por abstracción de operaciones muy conocidas en disciplinas más elementales como la Geometría Euclidiana, la Teoría de Números y el Análisis Real. Pero nada se dice allí acerca de que hay sistemas de objetos físicos con relaciones mutuas, que son modelos (o ejemplos) rigurosamente fieles de tales estructuras algebraicas. Aquí se presenta uno de tales modelos, que está constituido por una clase de objetos eléctricos llamados cuadripolos, y que pueden conectarse mutuamente en paralelo (como ejemplo de una «suma» de tales cuadripolos) y en serie (como ejemplo de un «productos entre ellos»). En este sistema, y con estas dos operaciones eléctricas, se muestra, por consideraciones eléctricas, que se puede formar un modelo eléctrico de varias estructuras algebraicas: de un grupo conmutativo, de un espacio vectorial, de un anillo de entericidad y de un campo de racionalidad.

Abstract: Textbooks and courses in Abstract Algebra (or Modern Algebra) present and explain several kinds of algebraic structures -such as abelian groups, vector spaces, rings, ideals and fields– as if these were “free constructions of the human spirit”. Usually mathematicians treat these structures as defined and analyzed in terms of operations which are characterized by properties which are presented as if comming up from a theoretical and purely platonic vacuum of ideas, in spite that they have been obtained indeed by inference and abstraction from well know, concrete operations in subjects such as Euclidean Geometry, Number Theory and Real Analysis. No considerations are done in those books about the existence and knowledge of physical objects endowed with mutual linkages, which are faithful models (or examples) of such algebraic structures with their inner operations. This paper presents one of those models, consisting of a class of electrical objects, the so-called electrical quadrupoles, which may be mutually connected in parallel (representing an “addition” between them) or in series (representing a “product” between them). Analysing these systems and these electrical operations, it is shown here how to construct a model of several of the above mentioned algebraic structures.

Sumário:  Os livros e os cursos de Álgebra Abstrata (ou Álgebra Moderna) definem e estudam vários tipos de estruturas algebráicas, como os grupos, os espaços vetoriais, os anéis, os ideais e os corpos (ou campos) de racionalidade. Estas estruturas definem-se e analisam-se em termos de umas operações que se caracterizam mediante propriedades que se apresentam como saídas da nada e que em realidade são somente inferidas por abstração de operações muito conhecidas em disciplinas mais elementares como a Geometria Euclidiana, a Teoria de Números e a Análise Real. Mas nada se diz ali a respeito de que há sistemas de objetos físicos com relações mútuas, que são modelos (ou exemplos) rigorosamente fiéis de tais estruturas algébricas. Aqui apresenta-se um de tais modelos, que está constituído por uma classe de objetos elétricos chamados cuadripolos, e que podem ser ligado mutuamente em paralelo (como exemplo de uma “soma” de tais cuadripolos) e em série (como exemplo de um “produtos entre eles”). Em este sistema, e com estas duas operações elétricas, mostra-se, por considerações elétricas, que pode ser formado um modelo elétrico de várias estruturas algébricas: de um grupo conmutativo, de um espaço vetorial, de um anel de entericidad e de um campo de racionalidade.


Article visits 237 | PDF visits 182


Downloads

Download data is not yet available.