Skip to main navigation menu Skip to main content Skip to site footer

CALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALES

CALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALES



Open | Download


Section
Articles

How to Cite
CALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALES. (2014). Revista EIA, 11(22), 39-50. https://eiaupgrade.metarevistas.org/index.php/reveia/article/view/671

DOI
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


RESUMEN

El horno de arco eléctrico proporciona un medio relativamente simple para la fusión de metales. Se utiliza en la producción de acero de alta pureza, aluminio, cobre, plomo, entre otros metales. Sin embargo, los hornos de arco son considerados como la carga más nociva para el sistema eléctrico de potencia. Por consiguiente, resulta de gran importancia contar con modelos de horno de arco que permitan determinar con alto grado de aproximación el comportamiento de este tipo de carga, puesto que se podría evaluar su impacto en términos de índices de calidad de energía para el sistema de potencia al cual se conecten. Uno de los principales problemas que surge al utilizar los modelos matemáticos de arco eléctrico consiste en la calibración de los parámetros que describen la dinámica del modelo. En este documento se muestra un procedimiento para calibrar todos los parámetros de un modelo de horno de arco eléctrico de corriente alterna, dadas mediciones reales de tensiones y corrientes. Se utiliza una red neuronal multicapa como emulador del modelo del horno. La red neuronal se entrena empleando datos de simulación obtenidos del modelo del horno implementado en el entorno Matlab®-Simulink®. Una vez entrenada la red, los parámetros de interés se obtienen resolviendo un problema inverso. Los resultados obtenidos muestran un error máximo de 4,1 % en el valor eficaz de las corrientes del arco eléctrico.

ABSTRACT

Electric arc furnace provides a relatively simple way for melting metals. They are used in the production of highly purified steel, aluminium, copper and other metals. However, they are considered the more damaging load for the power system. It is very important, therefore, to count on arc furnace models for determining with high degree of accuracy the performance of this type of load. In this way, it would be possible to assess the impact in terms of power quality indices for the power system to which they might be connected. When using electric arc furnace models in practice, a key issue is the calibration of the parameters of the model. In this paper, we show a procedure for calibrating all the parameters of an AC electric arc furnace model using real measurements of voltages and currents. It uses a multilayer neural network as an emulator of the electric arc furnace model. The neural network is trained using data obtained from the simulation of the electric arc furnace model implemented in Matlab®-Simulink®. Once the network is trained, the parameters of interest are obtained by solving an inverse problem. Results obtained show a maximum percentage error of 4.1 % for the rms value of the current involved in the electrical arc.

 


Article visits 1225 | PDF visits 200


Downloads

Download data is not yet available.