Skip to main navigation menu Skip to main content Skip to site footer

PRONÓSTICO DE LA DEMANDA MENSUAL DE ELECTRICIDAD CON SERIES DE TIEMPO

PRONÓSTICO DE LA DEMANDA MENSUAL DE ELECTRICIDAD CON SERIES DE TIEMPO



Open | Download


Section
Articles

How to Cite
PRONÓSTICO DE LA DEMANDA MENSUAL DE ELECTRICIDAD CON SERIES DE TIEMPO. (2017). Revista EIA, 13(26), 111-120. https://doi.org/10.24050/reia.v13i26.749

Dimensions
PlumX
Citations
license

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Víctor Gil-Vera

Víctor Gil-Vera,

Víctor Daniel Gil Vera, MSc.

Docente Investigador Facultad de Ingenierías y Arquitectura

Vicerrectoría de Investigaciones

Universidad Católica Luis Amigó


Objetivo: Implementar modelos con series de tiempo para el pronóstico de la demanda mensual de electricidad (Gwh).

Materiales y Métodos: Para el desarrollo y validación de los modelos se tomaron como base los valores de la demanda de energía eléctrica en el Sistema Interconectado Nacional (SIN) de Colombia en el período 2008-2014. Se emplearon series de tiempo aditivas con tendencias lineal, cuadrática y cúbica en el software estadístico R.

Resultados: De los tres modelos desarrollados el modelo cuadrático es el que mejor ajuste presenta (R² ajustado =0.95), AIC = 954,54, BIC = 991,00).

Conclusiones: Con este trabajo se concluye que las series de tiempo aplicadas al pronóstico de la demanda de electricidad permiten predecir con un alto grado de exactitud demandas futuras de energía eléctrica (GWh), información que puede generar ventajas a productores, distribuidores y grandes consumidores a la hora de establecer estrategias, optimizar su operación y realizar contratos bilaterales.


Article visits 1040 | PDF visits 566


Downloads

Download data is not yet available.
  1. Arango, S., 2007. Simulation of alternative regulations in the Colombian electricity market. Socio-Economic Planning Sciences, 41(4), pp.305–319. Available at: http://www.sciencedirect.com/science/article/pii/S0038012106000255.
  2. Botero, S.B. et al., 2008. Análisis de series de tiempo para la predicción de los precios de la energía en la bolsa de colombia. Cuadernos de Economía, 48, pp.174–207.
  3. Brillinger, D.R., 2015. Time Series: General. International Encyclopedia of the Social & Behavioral Sciences, 2, pp.341–346. Available at: http://www.sciencedirect.com.ezproxy.unal.edu.co/science/article/pii/B9780080970868420842.
  4. Contreras, C. & López, M., 2014. Ceramide sensing in the hippocampus: The lipostatic theory and Ockham’s razor. Molecular Metabolism, 3(2), pp.90–91. Available at: http://www.sciencedirect.com/science/article/pii/S2212877813001440.
  5. Diebold, F., 2001. Elements of forecasting 2nd ed. South & W. C. Publishing., eds., Australia.
  6. Dyner, I., Franco, C.J. & Arango, S., 2012. El mercado mayorista de electricidad colombiano 1st ed. C. F. de Minas, ed., Medellín: Universidad Nacional de Colombia.
  7. Giraldo, N., 2011. Modelado y Pronóstico de la Tendencia. , pp.17–29.
  8. Kelly, K.T., 2008. OCKHAM’S RAZOR, TRUTH, AND INFORMATION. In P. Adriaans & J. van Benthem, eds. Philosophy of Information. Handbook of the Philosophy of Science. Amsterdam: North-Holland, pp. 321–359. Available at: http://www.sciencedirect.com/science/article/pii/B9780444517265500145.
  9. Nagaraja, C.H., 2014. Chapter 1 - Introduction to R. In M. B. Rao & C. R. Rao, eds. Computational Statistics with R. Handbook of Statistics. Elsevier, pp. 1–48. Available at: http://www.sciencedirect.com/science/article/pii/B9780444634313000012.
  10. R Cran Project, 2015. The Comprehensive R Archive Network. , p.1. Available at: https://cran.r-project.org/.
  11. Rendón, J.G., Hinestroza, A.G. & Moreno, L.S., 2011. DETERMINANTES DEL PRECIO DE LA ENERGÍA ELÉCTRICA EN EL MERCADO NO REGULADO EN COLOMBIA. Revista Ciencias Estratégicas., 19(26), pp.225–246.
  12. Sandoval, A.M., 2004. Monografía del sector de electricidad y gas colombiano: Condiciones actuales y retos futuros. , pp.27–45. Available at: https://colaboracion.dnp.gov.co/CDT/Estudios Econmicos/272.pdf.
  13. UPME, 2004. Una visión del mercado eléctrico colombiano. , pp.1–110.
  14. Velásquez, J.. & Souza, R., 2007. or qué es tan difícil obtener buenos pronósticos de los precios de la electricidad en mercados competitivos ? , 20(34), pp.259–282.