Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Synthesis and characterization of Eu3Ba5Cu8O18-δ superconductor doped with 0.1% Graphene oxide

Síntesis y caracterización del superconductor Eu3Ba5Cu8O18-δ dopado con 0.1% de óxido de Grafeno



Abrir | Descargar


Sección
Artículos

Cómo citar
Synthesis and characterization of Eu3Ba5Cu8O18-δ superconductor doped with 0.1% Graphene oxide. (2024). Revista EIA, 21(42), 4201 pp. 1-20. https://doi.org/10.24050/reia.v21i42.1785

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Declaración del copyright

Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.

La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.

Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional

Sully Segura Peña
Luis Fernando Parra Suarez
Laura Natalia Ayala Sotelo
Maria Rosario Maldonado Cardenas
Julian David Segura Peña

This research presents the synthesis and evaluation of the structural and morphological properties of superconducting Eu3Ba5Cu8O18-δ doped with 0.1% graphene oxide, using the solid state reaction method. The structural analysis performed on the samples, both doped and undoped, allowed identifying the main phase as Eu3Ba5Cu8O18-δ (Eu358), with orthorhombic structure and space group Pmm2(25), maintaining superconducting properties in both cases. In addition, it was observed that doping with graphene oxide resulted in the formation of a minority phase of EuBa4Cu3O9 (Eu143), with cubic structure and space group P23(195). As for the morphological characterization, it was evidenced that the undoped sample presents aggregates formed by non-uniform size grains, with an average size of approximately 97 µm. In contrast, the sample doped with 0.1% graphene oxide exhibits significant improvements in uniformity and grain boundaries, with an average size of about 141 µm. These results confirm obtaining Eu3Ba5Cu8O18-δ with a 73% superconducting phase, exceeding the percentages previously reported using the solid-state reaction method.


Visitas del artículo 206 | Visitas PDF 247


Descargas

Los datos de descarga todavía no están disponibles.
  1. Abdulrahman, M. W., & Hussain, F. I. (2019, July). Synthesis of Y3Ba5Cu8O18 superconductor by auto-combustion reaction. In AIP Conference Proceedings (Vol. 2123, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5117012
  2. Alviz Meza, A., Kafarov, V., & Y Peña Ballesteros, D. (2017, December). Study of the continuous corrosion in an oxidation environment derived from the theoretical combustion products in a refinery. Case study: ferritic steel ASTM A335 P91. In Journal of Physics Conference Series (Vol. 935, No. 1, p. 012057). DOI 10.1088/1742-6596/935/1/012057
  3. Aliabadi, A., Farshchi, Y. A., & Akhavan, M. (2009). A new Y-based HTSC with Tc above 100 K. Physica C: Superconductivity and its applications, 469(22), 2012-2014.
  4. DOI: https://doi.org/10.1016/j.physc.2009.09.003.
  5. Delamare, M. P., Walter, H., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Characterization of natural and artificial low-angle boundaries in YBCO TSMG samples. Physica C: Superconductivity, 329(3), 160-177. DOI: https://doi.org/10.1016/S0921-4534(99)00454-2
  6. Dadras, S., Dehghani, S., Davoudiniya, M., & Falahati, S. (2017). Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Materials Chemistry and Physics, 193, 496-500. DOI: https://doi.org/10.1016/j.matchemphys.2017.03.003
  7. Debessai, M., Matsuoka, T., Hamlin, J. J., Bi, W., Meng, Y., Shimizu, K., & Schilling, J. S. (2010, March). Pressure-induced superconductivity in europium metal. In Journal of Physics: Conference Series (Vol. 215, No. 1, p. 012034). IOP Publishing. DOI 10.1088/1742-6596/215/1/012034
  8. Dias, F. T., Oliveira, C. P. D., Vieira, V. D. N., Silva, D. L., Mesquita, F., Almeida, M. L. D., ... & Pureur, P. (2014, December). Magnetic irreversibility and zero resistance in granular Y358 superconductor. In Journal of Physics: Conference Series (Vol. 568, No. 2, p. 022009). IOP Publishing. DOI: 10.1088/1742-6596/568/2/022009
  9. Falahati, S., Dadras, S., & Mosqueira, J. (2019). Investigation of the magnetic and transport properties of YBa 2 Cu 3 O 7-δ high temperature superconductor doped with graphene oxide. Journal of Superconductivity and Novel Magnetism, 32, 3755-3760. DOI: https://doi.org/10.1007/s10948-019-05171-z
  10. Gadzhimagomedov, S. K., Palchaev, D. K., Gadzhiev, M. K., Murlieva, Z. K., Rabadanov, M. K., Saypulaev, P. M., ... & Rabadanova, A. E. (2021, May). Superconducting YBCO ceramics after exposure to a plasma flow to a mixture of argon and oxygen. In Journal of Physics: Conference Series (Vol. 1923, No. 1, p. 012007). IOP Publishing. DOI: 10.1088/1742-6596/1923/1/012007
  11. Gaona, I. S., Supelano, G. I., & Vargas, C. P. (2020). Determination of critical superconducting parameters based on the study of the magnetization fluctuations for RE3Ba5Cu8O18-δ (RE= Sm, Eu, Gd, Dy and Ho) ceramic superconductor system. Ceramics International, 46(8), 11530-11538. DOI: https://doi.org/10.1016/j.ceramint.2020.01.179
  12. Gholipour, S., Daadmehr, V., Rezakhani, A. T., Khosroabadi, H., Shahbaz Tehrani, F., & Hosseini Akbarnejad, R. (2012). Structural phase of Y358 superconductor comparison with Y123. Journal of superconductivity and novel magnetism, 25, 2253-2258. DOI:https://doi.org/10.1007/s10948-012-1611-4
  13. Guerrero, U. F., Rivera, A. M., Cuaspud, J. A., Munevar, J., & Vargas, C. A. (2021). Synthesis of the La 3 Ba 5 Cu 8 O 18-δ and Sm 3 Ba 5 Cu 8 O 18-δ superconductors by the combustion and solid-state reaction methods. Materials Research, 24.
  14. DOI: https://doi.org/10.1590/1980-5373-MR-2020-0366
  15. Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., ... & Torng, C. J. (1987). High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Physical review letters, 58(9), 911. DOI: https://doi.org/10.1103/PhysRevLett.58.911.
  16. JG, B. (1986). Possible highT_c super-conductivity in the Ba-La-Cu-O system. Z Physik B, 64, 189-193.DOI: https://doi.org/10.1007/BF01303701
  17. Kamarudin, A. N., Awang Kechik, M. M., Abdullah, S. N., Baqiah, H., Chen, S. K., Abdul Karim, M. K., ... & Talib, Z. A. (2022). Effect of Graphene Nanoparticles Addition on Superconductivity of YBa2Cu3O7~ δ Synthesized via the Thermal Treatment Method. Coatings, 12(1), 91. DOI: https://doi.org/10.3390/coatings12010091
  18. Kraus, W., & Nolze, G. (1996). POWDER CELL–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of applied Crystallography, 29(3), 301-303. DOI:https://doi.org/10.1107/S0021889895014920
  19. Kumar, N., Das, S., Bernhard, C., & Varma, G. D. (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2. Superconductor Science and Technology, 26(9), 095008. DOI: 10.1088/0953-2048/26/9/095008
  20. Landínez Téllez, D. A., Cabrera Baez, M., & Roa-Rojas, J. (2012). Structure and conductivity fluctuations of the Y 3 Ba 5 Cu 8 O 18 superconductor. Modern Physics Letters B, 26(11), 1250067. DOI: https://doi.org/10.1142/S0217984912500674
  21. Momma, K., & Izumi, F. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied crystallography, 41(3), 653-658. DOI:https://doi.org/10.1107/S0021889808012016
  22. Parra Vargas, C. A., Canaría-Camargo, C. C., Roa-Rojas, J., & Albino-Aguiar, J. (2021). Análisis estructural del sistema superconductor RE3Ba5Cu8O18 (RE= Dy, Gd, Ho, Sm, Y, Yb).
  23. DOI: https://doi.org/10.18257/raccefyn.1163
  24. Parra-Borda, J. A., Rojas-Cruz, F. G., Cruz-Pacheco, A. F., Segura-Peña, S., & Vargas, C. P. (2017, December). Structural and magnetic analysis of the Pr1. 5Eu1. 5Ba5Cu8O18 system. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012005). IOP Publishing. DOI: 10.1088/1742-6596/935/1/012005
  25. Pavan Kumar Naik, S., Santosh, M., & Swarup Raju, P. M. (2018). Structural and thermal validations of Y 3 Ba 5 Cu 8 O 18 composites synthesized via citrate sol-gel spontaneous combustion method. Journal of Superconductivity and Novel Magnetism, 31, 1279-1286. DOI: https://doi.org/10.1007/s10948-017-4306-z.
  26. Rekaby, M., Roumié, M., Abou-Aly, A. I., Awad, R., & Yousry, M. (2014). Magnetoresistance study of Y 3 Ba 5 Cu 8 O 18 superconducting phase substituted by Nd 3+ and Ca 2+ ions. Journal of Superconductivity and Novel Magnetism, 27, 2385-2395.DOI: https://doi.org/10.1007/s10948-014-2572-6
  27. Sahoo, B., Singh, A. K., & Behera, D. (2020). Graphene oxide modified superconducting and elastic parameters of YBCO superconductor. Materials Chemistry and Physics, 240, 122252. DOI: https://doi.org/10.1016/j.matchemphys.2019.122252Get rights and content
  28. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. DOIhttps://doi.org/10.1038/nmeth.2089
  29. Shoushtari, M. Z., Heidarzadeh, G., & Ghahfarokhi, S. M. (2018). An Investigation of Y 3 Ba 5 Cu 8 O 18 Doping with Ag Nanoparticles and Its Application as Superconductor. Journal of Superconductivity and Novel Magnetism, 31, 3475-3483. DOI: https://doi.org/10.1007/s10948-018-4581-3
  30. Slimani, Y., Hannachi, E., Azzouz, F. B., & Salem, M. B. (2018). Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics, 92, 5-12. DOI: https://doi.org/10.1016/j.cryogenics.2018.03.010
  31. Sahoo, B., Karmakar, S., & Behera, D. (2019, October). Improvement of critical parameters of YBCO superconductor by addition of graphene oxide. In AIP Conference Proceedings (Vol. 2162, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/1.5130270
  32. Suan, M. S. M., Johan, M. R., & Siang, T. C. (2012). Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Physica C: Superconductivity, 480, 75-78. DOI: https://doi.org/10.1016/j.physc.2012.05.006.
  33. Supelano, G. I., Santos, A. S., & Vargas, C. P. (2014). Magnetic fluctuations on TR3Ba5Cu8Oδ (TR= Ho, Y and Yb) superconducting system. Physica B: Condensed Matter, 455, 79-81. DOI: https://doi.org/10.1016/j.physb.2014.07.050
  34. Tavana, A., & Akhavan, M. (2010). How T c can go above 100 K in the YBCO family. The European Physical Journal B, 73, 79-83. DOI:https://doi.org/10.1140/epjb/e2009-00396-7
  35. Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. Journal of applied crystallography, 34(2), 210-213. . DOI: https://doi.org/10.1107/S0021889801002242
  36. Topal, U., Akdogan, M., & Ozkan, H. (2011). Electrical and structural properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) superconductors. Journal of superconductivity and novel magnetism, 24, 2099-2102.DOI: https://doi.org/10.1007/s10948-011-1176-7
  37. Topal, U., & Akdogan, M. (2012). The Role of Oxygenation on Superconducting Properties of RE 3 Ba 5 Cu 8 O 18 (RE= Y, Sm and Nd) Compounds. Journal of superconductivity and novel magnetism, 25, 239-244. DOI:https://doi.org/10.1007/s10948-011-1285-3
  38. Udomsamuthirun, P., Kruaehong, T., Nilkamjon, T., & Ratreng, S. (2010). The new superconductors of YBaCuO materials. Journal of superconductivity and novel magnetism, 23, 1377-1380.. DOI: https://doi.org/10.1007/s10948-010-0786-9.
  39. Walter, H., Delamare, M. P., Bringmann, B., Leenders, A., & Freyhardt, H. C. (2000). Melt-textured YBaCuO with high trapped fields up to 1.3 T at 77 K. Journal of Materials Research, 15(6), 1231-1234. DOI: https://doi.org/10.1557/JMR.2000.0175.
  40. Wei, K., Ing, K., Hamdan, M. S., Radiman, S., & Abd-Shukor, R. (2018). AC Susceptibility and superconducting properties of graphene added YBa 2 Cu 3 O 7− d. Journal of Superconductivity and Novel Magnetism, 31, 2699-2703. DOI:https://doi.org/10.1007/s10948-017-4536-0.
  41. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924. DOI: https://doi.org/10.1002/adma.201001068