Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Impact of clay minerals on reservoir sandstone properties: comparative study in Colombian eastern cordillera and middle Magdalena valley basins

Impacto de minerales arcillosos en propiedades petrofísicas de los reservorios de areniscas: estudio comparativo en las cuencas de la cordillera oriental y el valle medio del Magdalena (Colombia)



Abrir | Descargar


Sección
Artículos

Cómo citar
Impact of clay minerals on reservoir sandstone properties: comparative study in Colombian eastern cordillera and middle Magdalena valley basins. (2024). Revista EIA, 21(42), 4230 pp. 1-34. https://doi.org/10.24050/reia.v21i42.1803

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Declaración del copyright

Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.

La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.

Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional

Fred Jesús Paba-Santiago
Carlos Alberto Ríos-Reyes
Hernando Buendía-Lombana

The aim of this study is to examine how mineralogy influences the petrophysical properties, particularly porosity and permeability, of potential sandstone reservoirs in Colombia. It seeks to comprehensively understand how the presence of clay minerals impacts the overall quality of hydrocarbon reservoirs in the country. Samples of sandstones from reservoirs at various outcrops in the Eastern Cordillera and Middle Magdalena Valley basins were collected. Detailed analysis of mineralogy and petrographic characteristics of the samples was conducted through various analytical techniques such as transmitted light microscopy, X-ray diffraction, and scanning electron microscopy. Porosity and permeability were measured using automated permeametry and porosimetry equipment. The predominant composition of the analyzed reservoir rocks comprises quartz (45-50%), feldspar (35-40%), and clays (10-20%). These rocks were categorized into two distinct groups based on their permeability (K) and porosity (Φ), ranging from 0.009 to 29.220 mD and 1.88 to 20.75%, respectively. The presence of illite correlated with a reduction in both porosity and permeability, highlighting its negative impact on reservoir quality. Conversely, an elevated concentration of kaolinite was associated with favorable porosity and permeability. Samples with feldspar sericitization demonstrated inferior hydrocarbon storage quality. This study provides a deeper understanding of how mineralogy affects the petrophysical properties of sandstone reservoirs in Colombia. These findings are crucial for guiding exploration and production strategies in the Colombian oil industry, especially in challenging geological environments like those studied.


Visitas del artículo 81 | Visitas PDF 42


Descargas

Los datos de descarga todavía no están disponibles.
  1. Aguilera, R., Sotelo, V., Burgos, C., Arce, C., Gómez, C., Mojica, J., Castillo, H., Jiménez, D. & Osorno, J. (2010). Organic Geochemistry Atlas of Colombia. Earth Sciences Research Journal, Special Edition, 14, 1-174.
  2. Al-Kharra'a, H.S., Wolf, K.H.A.A., AlQuraishi, A.A., Mahmoud, M.A., Deshenenkov, I., AlDuhailan, M.A., Alarifi, S.A., AlQahtani, N.B., Kwak, H.T. & Zitha, P.L.J. (2023). Impact of clay mineralogy on the petrophysical properties of tight sandstones. Geoenergy Science and Engineering, 227, Article 211883. https://doi.org/10.1016/j.geoen.2023.211883
  3. Anovitz, L.M. & Cole, D.R. (2015). Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry, 80(1), 61–164. https://doi.org/10.2138/rmg.2015.80.04
  4. Bera, B., Mitra, S.K. & Vick, D. (2011). Understanding the microstructure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). Micron, 42(5), 412-418. https://doi.org/10.1016/j.micron.2010.12.002
  5. Burley, S.D. & Worden, R.H. (2003). Sandstone Diagenesis: The Evolution of Sand to Stone. In: Sandstone Diagenesis, Recent and Ancient (Burley, S.D., Worden, R.H., Eds.), Blackwell Publishing: Malden, MA, USA, pp. 1–44.
  6. Caballero, V.M., Parra, M. & Mora, A.R. (2010). Levantamiento de la Cordillera Oriental de Colombia durante el Eoceno Tardío - Oligoceno Temprano: Proveniencia sedimentaria en el Sinclinal de Nuevo Mundo, Cuenca Valle Medio del Magdalena. Boletín de Geología, 32(1), 45-77.
  7. Campos, R., Barrios, I. & Lillo, J. (2015). Experimental CO2 injection: Study of physical changes in sandstone porous media using Hg porosimetry and 3D pore network models. Energy Reports, 1, 71-79. https://doi.org/10.1016/j.egyr.2015.01.004
  8. Combes, R., Robin, M., Blavier, G., Aı̈dan, A. & Degrève, F. (1998). Visualization of imbibition in porous media by environmental scanning electron microscopy: application to reservoir rocks. Journal of Petroleum Science and Engineering, 20(3–4), 133-139. https://doi.org/10.1016/S0920-4105(98)00012-6
  9. Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Penas, R., Pulham, A.J. & Taborda, A. (1995). Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10), 1421–1442. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D
  10. Desbois, G., Urai, J.L., Kukla, P.A., Konstanty, J. & Baerle, C. (2011). High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 78(2), 243-257. https://doi.org/10.1016/j.petrol.2011.06.004
  11. Desbois, G., Urai, J.L., Hemes, S., Schröppel, B., Schwarz, J.-O., Mac, M. & Weiel, D. (2016). Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany). Journal of Petroleum Science and Engineering, 140, 128-148. https://doi.org/10.1016/j.petrol.2016.01.019
  12. Fan, A., Yang, R., Lenhardt, N., Wang, M., Han, Z., Li, J., Li, Y. & Zhao, Z. (2019). Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (central China). Marine and Petroleum Geology, 103, 276-293. https://doi.org/10.1016/j.marpetgeo.2019.02.010
  13. French, M.W., Worden, R.H., Mariani, E., Larese, R.E., Mueller, R.R. & Kliewer, C.E. (2012). Microcrystalline quartz generation and the preservation of porosity in sandstones; evidence from the Upper Cretaceous of the Subhercynian Basin, Germany. Journal of Sedimentary Research, 82(6), 422–434. https://doi.org/10.2110/jsr.2012.39
  14. García, M., Mier, R., Cruz, L.E. & Vásquez, M. (2009). Evaluación del potencial hidrocarburífero de las cuencas colombianas. Contrato Interadministrativo Nº 2081941 DE 2008 FONADE-UIS-ANH. http://oilproduction.net/files/cuencas%20petroleras%20de%20colombia-2009.pdf
  15. Ghanizadeh, A., Clarkson, C., Aquino, S., Ardakani, O. & Sanei, H. (2015). Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel, 153, 664–681. https://doi.org/10.1016/j.fuel.2015.03.020
  16. Houseknecht, D.W. & Pittman, E.D. (1992). Origin, diagenesis & Petrophysics of Clay Minerals in Sandstones. Special Publication 47. Society of Sedimentary Geologists, Tulsa.
  17. Jianfeng, T., Yongli, G. & Pengbo, Z. (2013). Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin. Oil and Gas Geology, 34(5), 700-707.
  18. Islam, M.A. (2009). Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35(1), 89–100. https://doi.org/10.1016/j.jseaes.2009.01.006
  19. Kantorowicz, J.D. (1990). The Influence of variations in illite morphology on the permeability of Middle Jurassic Brent Group sandstones, Cormorant Field, UK North Sea. Marine and Petroleum Geology, 7(1), 66-74. https://doi.org/10.1016/0264-8172(90)90057-N
  20. Kareem, R., Cubillas, P., Gluyas, J., Bowen, L. & Greenwell, H.Ch. (2017). Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA). Journal of Petroleum Science and Engineering, 149, 436-455. https://doi.org/10.1016/j.petrol.2016.09.029
  21. Kassab, M.A., Abu Hashish, M.F., Nabawy, B.S. & Elnaggar, O.M. (2017). Effect of kaolinite as a key factor controlling the petrophysical properties of the Nubia sandstone in central Eastern Desert, Egypt. Journal of African Earth Sciences, 125, 103-117. https://doi.org/10.1016/j.jafrearsci.2016.11.003
  22. Kweon, H. & Deo, M. (2017). The impact of reactive surface area on brine-rock-carbon dioxide reactions in CO2 sequestration. Fuel, 188, 39-49. https://doi.org/10.1016/j.fuel.2016.10.010
  23. Lai, J., Wang, G., Ran, Y. & Zhou, Z. (2015). Predictive distribution of high-quality reservoirs of tight gas sandstones by linking diagenesis to depositional facies: Evidence from Xu-2 sandstones in the Penglai area of the central Sichuan basin, China. Journal of Natural Gas Science and Engineering, 27, 810-822. https://doi.org/10.1016/j.jngse.2015.09.043
  24. Loucks, R.G., Reed, R.M., Ruppel, S.C. & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071-1098. https://doi.org/10.1306/08171111061
  25. Luffel, D.L., Hopkins, C.W. & Schettler, P.D. (1993). Matrix permeability measurements of gas productive shales. Proceedings of the 68th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, SPE 26633, Houston, USA.
  26. Makhanov, K., Deutsch, C., Wong, R., Chan, J. & Payne, S. (2014). Modeling long-range channel deposits with a pattern-based approach. Journal of Petroleum Science and Engineering, 122, 678–693. https://doi.org/10.1016/j.petrol.2014.06.003
  27. McKenny, B.J.L., Hamilton, P.J., Faiz, M. & Sayers, J. (2009). Mineralogical and petrophysical characterisation of coal seam gas reservoirs from the Bowen and Sydney basins, Australia. International Journal of Coal Geology, 79(3), 201-214. https://doi.org/10.1016/j.coal.2009.07.001
  28. Nabawy, B.S. & Hossin, M. (2017). Statistical evaluation of the petrophysical controls on the effective porosity and permeability in heterogeneous sandstone reservoirs. NRIAG Journal of Astronomy and Geophysics, 6(1), 255-268. https://doi.org/10.1016/j.nrjag.2017.03.006
  29. Nelson, P.H. (1994). Permeability-Porosity Relationships in Sedimentary Rocks. Log Analyst, 35(3), 38-62.
  30. Potter, D.K. & Stephenson, A. (1988). Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letters, 15(10), 1097-1100. https://doi.org/10.1029/GL015i010p01097
  31. Rathnaweera, T.D., Ranjith, P.G., Perera, M.S.A. & Zhou, F. (2018). Characterisation of the effect of water saturation on the mechanical behaviour of reservoir rock using micro-computed tomography and acoustic emission techniques. Marine and Petroleum Geology, 91, 720-735. https://doi.org/10.1016/j.marpetgeo.2018.02.035
  32. Rindel, A.K. & Chatterjee, R. (2016). Reservoir characterization of a tight gas sandstone reservoir using a multi-scale approach: a case study from Krishna Godavari basin, India. Journal of Petroleum Science and Engineering, 145, 157-173. https://doi.org/10.1016/j.petrol.2016.04.024
  33. Schmidt, V. & McDonald, D.A. (1979). The role of secondary porosity in the course of sandstone diagenesis. SEPM Special Publication, 26, 175-207. https://doi.org/10.2110/pec.79.26.0175
  34. Soto, J., Rueda, L., Zuluaga, L., Rueda, J., Sandoval, M., Achong, N., Reyes, A., Martínez, S., Torres, J., Vargas, J., Garzón, G. & Ladino, M. (2018). Evaluación del comportamiento de arenas arcillosas de Colombia en procesos de recuperación mejorada de hidrocarburos con inyección cíclica de CO2. Revista Fuentes, 16(2), 165-178. https://doi.org/10.18273/revfue.v16n2-2018008
  35. Weibel, R. & Friis, H. (2007). Reservoir quality effects of diagenesis in feldspathic sandstones from the Lower Jurassic Gassum Formation, Norwegian–Danish Basin. Geological Society, London, Special Publications, 270(1), 95-110. https://doi.org/10.1144/GSL.SP.2007.270.01.07