Skip to main navigation menu Skip to main content Skip to site footer

Model Of Assignment Of Demand In A Brt System Considering The Congestion Of The System And The Perception Of Comfort Of The Passenger

Modelo de asignación de demanda de pasajeros en un sistema de buses de transito rápido considerando la congestión del sistema y la percepción de comodidad del pasajero


Figura 1. Mapa ruta 2 y3 Megabus (Pereira - Risaralda). Elaboración propia con Open Street Maps (OSM)
Open | Download


Section
Articles

How to Cite
Model Of Assignment Of Demand In A Brt System Considering The Congestion Of The System And The Perception Of Comfort Of The Passenger. (2020). Revista EIA, 17(34), 1-12. https://doi.org/10.24050/reia.v17i34.1250

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.

Diego Armando Galindres Guancha
Jose Adalberto Soto Mejía

Diego Armando Galindres Guancha,

Se graduó en la Universidad Tecnológica de Pereira (UTP) como Ingeniero Industrial en 2010 y es candidato a Magister en Investigación de Operaciones y Estadística de la misma universidad.

Ejerció profesionalmente en el ingenio Riopaila-Castilla en el área de Mejoramiento de fábrica. Y desde 2012 trabaja en la UTP donde ha hecho parte de proyectos de investigación en convenios entre la UTP – Colciencias. Actualmente también ejerce como profesor catedrático de estadística en la misma Universidad.

 

Jose Adalberto Soto Mejía,

Físico y Magister en Ciencias Físico Matemáticas de la Universidad Estatal de Kharkov Maximo Gorki, Ucrania. Es Magister en Investigación Operativa y Estadística de la Universidad Tecnológica de Pereira. Realizó sus estudios de doctorado en Universidade Estadual de Campinas, Brasil. Desde el año 1984 se encuentra vinculado a la Universidad Tecnológica, en la actualidad como docente Titular, inscrito  al programa de ingeniera Industrial y a la vez como director del Grupo de investigación en Análisis Envolvente de Datos de la Universidad Tecnológica de Pereira reconocido por Colciencias en la categoría B. Actualmente director de la Maestría en Investigación Operativa y Estadística en la Universidad Tecnológica de Pereira.

 

Su investigación se ha basado en las líneas de Análisis de Medidas de Eficiencia y Productividad, Dinámica de Sistemas y Sistemas de Producción y Operaciones. Como resultados de sus investigaciones en los diferentes proyectos de investigación cuenta con artículos científicos, libros, ponencias, entre otros, que le permitieron ser reconocido en el 2010 por la Asociación Colombiana de Facultades de Ingeniería ACOFI con el primer puesto en modalidad presentación oral.


Bus Rapid Transit (BRT) are public transport systems that have gained popularity in the world. The complexity of this type of systems has made necessary to configure strategies based on optimization models for the generation of dispatch frequencies, time tables, and fleet control in real time context. However, most of the works where the developed models are tested, do not consider how the demand is distributed along the available routes. This work shows the impact generated in the load profile of the buses, and the average waiting time for each route during the operation, when the criterion with which the passengers choose the route varies. In a first scenario: The passengers use the service, having only the objective of choosing the fastest route to take them to their destination. In a second scenario, passengers make a prior evaluation before boarding a feasible bus for them. The evaluation consists of taking into account two criteria: the comfort inside the bus and the time that must be waited for the next bus to arrive. 


Article visits 834 | PDF visits 432


Downloads

Download data is not yet available.
  1. Abbas-Turki, A., Grunder, O., Elmoudni, A., 2002. Public transportation systems: modeling and analysis based on a new Petri net approach, in: 2002 IEEE International Conference on Systems, Man and Cybernetics. Presented at the 2002 IEEE International Conference on Systems, Man and Cybernetics, p. 6 pp. vol.4-. https://doi.org/10.1109/ICSMC.2002.1173267
  2. Andradez, P., Felipe, C., 2014. Formulación de un modelo de equilibrio estocástico para asignación de pasajeros en sistemas de transporte público. Repos. Académico - Univ. Chile.
  3. Ávila, P., Irarragorri, F., Caballero, R., 2014. A bi-objective model for the integrated frequency-timetabling problem. pp. 209–219. https://doi.org/10.2495/UT140181
  4. Bouzaïene-Ayari, B., Gendreau, M., Nguyen, S., 2001. Modeling Bus Stops in Transit Networks: A Survey and New Formulations. Transp. Sci. 35, 304–321. https://doi.org/10.1287/trsc.35.3.304.10148
  5. Cats, O., 2011. Dynamic Modelling of Transit Operations and Passenger Decisions.
  6. Cea, J.D., Larranaga, F., E, J., 1988. TRANSIT ASSIGNMENT TO MINIMAL ROUTES: AN EFFICIENT NEW ALGORITHM. Doc. Trab. NO 57 ISSN0376-687X.
  7. Ceder, A., 2015. Public Transit Planning and Operation: Modeling, Practice and Behavior, Second Edition. CRC Press.
  8. Cepeda, M., 2006. Un Nuevo Modelo para la Estimación del Tiempo de Espera en Paraderos de Transporte Público. Obras Proy. Rev. Ing. Civ. 36–44.
  9. Cominetti, R., Correa, J., 2001. Common-lines and passenger assignment in congested transit networks. Transp. Sci. 35, 250–267.
  10. Galindres, D., Soto, J., Estrada, S., 2017. Asignación de frecuencias óptimas, a través de un modelo multiobjetivo, para un sistema brt. Rev. EIA 13. https://doi.org/10.24050/reia.v13i26.743
  11. Hamdouch, Y., Ho, H.W., Sumalee, A., Wang, G., 2011. Schedule-based transit assignment model with vehicle capacity and seat availability. Transp. Res. Part B Methodol. 45, 1805–1830. https://doi.org/10.1016/j.trb.2011.07.010
  12. Hernández, D., Muñoz, J.C., Giesen, R., Delgado, F., 2015. Analysis of real-time control strategies in a corridor with multiple bus services. Transp. Res. Part B Methodol. 78, 83–105. https://doi.org/10.1016/j.trb.2015.04.011
  13. Koehler, L.A., Kraus, W., Camponogara, E., 2011. Iterative Quadratic Optimization for the Bus Holding Control Problem. IEEE Trans. Intell. Transp. Syst. 12, 1568–1575. https://doi.org/10.1109/TITS.2011.2164909
  14. Leiva, C., Muñoz, J.C., Giesen, R., Larrain, H., 2010. Design of limited-stop services for an urban bus corridor with capacity constraints. Transp. Res. Part B Methodol. 44, 1186–1201. https://doi.org/10.1016/j.trb.2010.01.003
  15. Leurent, F., Chandakas, E., Poulhès, A., 2014. A traffic assignment model for passenger transit on a capacitated network: Bi-layer framework, line sub-models and large-scale application. Transp. Res. Part C Emerg. Technol. 47, 3–27. https://doi.org/10.1016/j.trc.2014.07.004
  16. Luhua, S., Yin, H., Xinkai, J., 2011. Study on Method of Bus Service Frequency Optimal ModelBased on Genetic Algorithm. Procedia Environ. Sci., 2011 3rd International Conference on Environmental Science and Information Application Technology ESIAT 2011 10, Part A, 869–874. https://doi.org/10.1016/j.proenv.2011.09.139
  17. Narváez, M.L.J., Mejía, J.A.S., 2016. Utilización de tarjetas inteligentes para estimar matrices origen-destino. Aplicación al sistema Megabús, Pereira. Cienc. E Ing. Neogranadina 26, 73–93.
  18. Ramírez, A., Soto, J.A., Orozco, Á., 2015. Bus rapid transit control system using restrictive holding and operating tables, in: 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). Presented at the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 141–148. https://doi.org/10.1109/Chilecon.2015.7400366
  19. Rohani, M.M., Wijeyesekera, D.C., Karim, A.T.A., 2013. Bus Operation, Quality Service and The Role of Bus Provider and Driver. Procedia Eng., Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 53, 167–178. https://doi.org/10.1016/j.proeng.2013.02.022
  20. Schmöcker, J.-D., Bell, M.G.H., Kurauchi, F., 2008. A quasi-dynamic capacity constrained frequency-based transit assignment model. Transp. Res. Part B Methodol. 42, 925–945. https://doi.org/10.1016/j.trb.2008.02.001
  21. Spiess, H., Florian, M., 1989. Optimal strategies: A new assignment model for transit networks. Transp. Res. Part B Methodol. 23, 83–102. https://doi.org/10.1016/0191-2615(89)90034-9
  22. Vidales, M., Daniel, A., 2005. Optimización de recorridos y frecuencias en sistemas de transporte público urbano colectivo.
  23. Yang, L., Lam, W., 2006. Probit-type reliability-based transit network assignment. Transp. Res. Rec. J. Transp. Res. Board 154–163.