Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of Cedrela odorata Linnaeus extract in concrete handling and resistance to compression

Evaluación del extracto de Cedrela odorata Linnaeus en la manejabilidad del concreto y su resistencia a la compresión


Concrete strength in psi by addition of exudate
Open | Download


Section
Articles

How to Cite
Evaluation of Cedrela odorata Linnaeus extract in concrete handling and resistance to compression. (2021). Revista EIA, 18(36), 36003 pp. 1-11. https://doi.org/10.24050/reia.v18i36.1497

Dimensions
PlumX
Citations
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright statement

The authors exclusively assign to the Universidad EIA, with the power to assign to third parties, all the exploitation rights that derive from the works that are accepted for publication in the Revista EIA, as well as in any product derived from it and, in in particular, those of reproduction, distribution, public communication (including interactive making available) and transformation (including adaptation, modification and, where appropriate, translation), for all types of exploitation (by way of example and not limitation : in paper, electronic, online, computer or audiovisual format, as well as in any other format, even for promotional or advertising purposes and / or for the production of derivative products), for a worldwide territorial scope and for the entire duration of the rights provided for in the current published text of the Intellectual Property Law. This assignment will be made by the authors without the right to any type of remuneration or compensation.

Consequently, the author may not publish or disseminate the works that are selected for publication in the Revista EIA, neither totally nor partially, nor authorize their publication to third parties, without the prior express authorization, requested and granted in writing, from the Univeridad EIA.


Candelaria Nahir Tejada Tovar,

Ingeniera Química, Magister en Ingeniería Ambiental, Profesora Titular del programa del programa de Ingeniería Química, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia, Process Design and Biomass Utilization Research Group (IDAB), Avenida del Consulado Calle 30 No. 48 – 152, Colombia; 130015


In the present work the incidence of C. odorata L. aggregate extract in the mixing water was evaluated as an alternative to improve the compressive strength of concrete and the workability of the mix, following NTC 673 and NTC 396 standards. For the analysis of compressive strength and workability of concrete mixes two variables were involved which were water/cement ratios of 0.55 and 0.60 and dosages of cedar extract by weight of cement added in the mixing water of 0.0, 0.3, 0. 5, 0.7 and 0.9 %, resulting in a total of 30 cylindrical specimens of 4 inches in diameter and 8 inches in height manufactured under a 1:2:2 ratio, with coarse aggregate of maximum size of ¾ inches and type I cement for general use, in accordance with NTC 550. Describe the main results and indicate the exact level of statistical significance. Highlight those results achieved that are novel. The use of cedar exudate is recommended to improve the workability and compressive strength of concrete.


Article visits 410 | PDF visits 240


Downloads

Download data is not yet available.
  1. Abdulsada, S. A., & Török, T. I. (2019). Studying effect of addition green inhibitor on compression strength of reinforced concrete. IOP Conference Series: Materials Science and Engineering, 613(1), 3–7. https://doi.org/10.1088/1757-899X/613/1/012024
  2. Babilonia Escallon, I., & Urango Rojas, S. P. (2015). El Uso De Aditivos De Origen Natural Integral a Masas De Concreto Para La Protección Contra La Corrosión Del Acero. Universidad de Cartegana.
  3. García Díaz, Y., & Méndez Medina, W. (2016). Uso del exudado gomoso de C. Odorata L. Como inhibidor de corrosión de acero de refuerzo frente al ambiente salino de la ciudad de Cartagena de indias. Universidad de Cartagena.
  4. Garin, L., Santilli, ; A, & Pedoja, ; E. (2012, September). Influencia del curado en la resistencia a compresión del hormigón: estudio experimental, 6.
  5. Guo, Y., Xie, J., Zhao, J., & Zuo, K. (2019). Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete. Construction and Building Materials, 204, 41–49. https://doi.org/10.1016/j.conbuildmat.2019.01.178
  6. Hernández, E. F., Cano-Barrita, P. F., & Torres-Acosta, A. A. (2016). Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete. Materiales de Construcción, 66(321), 1–14. https://doi.org/10.3989/mc.2016.07514
  7. ICONTEC. (1992). Método de ensayo para determinar el asentamiento del concreto. Norma Técnica Colombiana NTC 396. Bogotá: Instituto de Normas Técnicas y Certificación.
  8. ICONTEC. (2010). Ensayo de Resistencia a la Compresión de Especimenes Cilindricos de Concreto. Norma Técnica Colombiana NTC 673. Bogotá: Instituto de Normas Técnicas y Certificación.
  9. INVIAS. (2007). Resistencia a la compresión de cilindros de concreto. Norma de Ensayo I.N.V.E. 410-07. Bogotá: Instituto Nacional de Vias.
  10. Okeniyi, J. O., Loto, C. A., & Popoola, A. P. I. (2014). Rhizophora mangle L. effects on steel-reinforced concrete in 0.5 M H 2SO4: Implications for corrosion-degradation of wind-energy structures in industrial environments. Energy Procedia, 50, 429–436. https://doi.org/https://doi.org/10.1016/j.egypro.2014.06.052
  11. Okeniyi, J. O., Popoola, A. P. I., & Loto, C. A. (2017). Corrosion-inhibition and compressive-strength performance of Phyllanthus muellerianus and triethanolamine on steel-reinforced concrete immersed in saline/marine simulating-environment. Energy Procedia, 119, 972–979. https://doi.org/10.1016/j.egypro.2017.07.130
  12. Palanisamy, S. P., Maheswaran, G., Selvarani, A. G., Kamal, C., & Venkatesh, G. (2018). Ricinus communis – A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in concrete in chloride media. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2018.05.020
  13. Pérez, J. M., & González, A. P. (2015). Análisis de la influencia de factores ambientales en la resistencia a compresión del hormigón armado. (J. M. Pérez, Ed.) (Revista Te). Villanueva de la Cañada (Madrid).
  14. Pradipta, I., Kong, D., & Tan, J. B. L. (2019). Natural organic antioxidants from green tea inhibit corrosion of steel reinforcing bars embedded in mortar. Construction and Building Materials, 227, 117058. https://doi.org/10.1016/j.conbuildmat.2019.117058
  15. Quraishi, M., Nayak, D., Kumar, R., & Kumar, V. (2017). Corrosion of Reinforced Steel in Concrete and Its Control: An overview. Journal of Steel Structures & Construction, 03(01), 1–6. https://doi.org/10.4172/2472-0437.1000124
  16. Rajendran, S. (2015). Influence of Natural extract of Hibiscus on the corrosion resistance of mild steel immersed in Reinforced concrete. Pramana Research Journal, 9, 1201–1207.
  17. Rebouh, R., Boukhatem, B., Ghrici, M., & Tagnit-Hamou, A. (2017). A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure. Construction and Building Materials, 149, 778–789. https://doi.org/10.1016/j.conbuildmat.2017.05.165
  18. Sánchez de Guzmán, D. (2011). Durabilidad y Patología del Concreto. (Asocreto, Ed.) (2nd ed.). Bogota.
  19. Valdez, B., Schorr, M., Cheng, N., Beltran, E., & Salinas, R. (2018). Technological applications of volatile corrosion inhibitors. Corrosion Reviews, 36(3), 227–238. https://doi.org/10.1515/corrrev-2017-0102