Estabilidad de correlaciones de la actividad eléctrica no-lineal del cerebro en reposo con ojos cerrados
Stability of correlations of non-linear electrical activity of the resting brain with closed eyes


Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Mostrar biografía de los autores
Introducción: la señal del EEG suele interpretarse desde una mirada lineal, sin embargo, desde hace algunas décadas se estudia la actividad eléctrica cerebral como un sistema dinámico, basado en la teoría del caos, con matemáticas no lineales. Objetivo: analizar la estabilidad de las correlaciones de los índices de Hurst a través del tiempo en sujetos en reposo con los ojos cerrados. Métodos: se evaluaron 13 varones universitarios con el dispositivo cerebro-interfaz Emotiv Epoc® con frecuencia de muestreo de 128 Hz. Se analizaron los rangos de frecuencia delta (1-3 Hz), theta (3,5-7 Hz), alfa (8-12 Hz), beta (13-30 Hz) y gamma (>30 Hz). Resultados: los resultados muestran estabilidad en el porcentaje de correlaciones en todas las bandas estudiadas en la mayoría de los sujetos. esta situación ocurre en ventanas temporales de 10, 30 y 60 segundos. Conclusiones: este estudio exploratorio muestra la persistencia en el tiempo de procesos meta-sincrónicos no-lineales que obedecen a la dinámica del balance caos/orden global del cerebro, en condiciones de reposo, basal con ojos cerrados.
Visitas del artículo 455 | Visitas PDF 251
Descargas
- Bassingthwaighte J, Raymond G. (1994). Evaluating rescaled range analysis for time series. Annals of Biomedical Engineering, 2(4): pp. 432-444.
- Bear M, Connors B, Paradiso M. (2016) Neurociencia, la exploración del cerebro. 4° ed. Madrid: Wolters Kluver.
- Buzsaki G. (2006). Rhythms of the brain. London: Oxford University Press.
- Corless M. (2011). Introduction to dynamic systems. Indiana: Purdue University.
- Díaz H, Córdova F, Cañete L, Palominos F, Cifuentes F, Sánchez C, et al. (2015). Order and chaos in the brain: fractal time series analysis of the EEG activity during a cognitive problem solving task. Procedia Computer Science, 55: pp. 1410-1419. https://doi.org/10.1016/j.procs.2015.07.135
- Díaz H, Maureira F, Cohen E, Córdova F, Palominos F, Otárola J, et al. (2015). Individual differences in the order/chaos balance of the brain selforganization. Annals of Data Science, 2(3): pp. 1-18. https://doi.org/10.1016/j.procs.2017.11.378
- Díaz H, Maureira F, Flores G, Fuentes I, García F, Maertens P, et al. (2018). Moving correlations and chaos in the brain during closed eyes basal conditions. Procedia Computer Science, 139: pp. 473-480. https://doi.org/10.1016/j.procs.2018.10.248
- Díaz H, Maureira F, Córdova F. (2018). Times series of closed and open eyes EEG conditions reveal differential characteristics in the temporality of linear and no-linear analysis domain. Procedia Computer Science,139: pp. 570-577. https://doi.org/10.1016/j.procs.2018.10.208
- Díaz H, Maureira F, Flores E, Córdova F. (2018). Intra e inter-hemispheric correlation of the order/chaos fluctuation in the brain activity during a motor imagination task. Procedia Computer Science, 139: pp. 456-463. https://doi.org/10.1016/j.procs.2018.10.250
- Díaz H, Maureira F, Flores E, Cifuentes H, Córdova F. (2019). Synchronizing oscillatory chaos in the brain. Procedia Computer Science, 162: pp. 982-989. https://doi.org/10.1016/j.procs.2019.12.076
- Díaz H, Maureira F, Flores E, Gárate E, Muñoz S. (2019). Intra and inter-individual variability in the chaotic component and functional connectivity of the EEG signal in basal closed eyes condition. Procedia Computer Science, 162: pp. 966-973. https://doi.org/10.1016/j.procs.2019.12.077
- Díaz H, Maureira F, Otárola J, Rojas R, Alarcón O, Cañete L. (2019). EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Computer Science, 162: pp. 974-981.
- Kumar J, Bhuvaneswari P. (2012). Analysis of electroencephalography (EEG) signals and its categorization-a study. Procedia Engineering, 38: pp. 2525-2536. https://doi.org/10.1016/j.proeng.2012.06.298
- Layek G. (2015). An introduction to dynamical system and chaos. New York: Springer.
- Maureira F. (2017) ¿Qué es la inteligencia? 1° ed. Madrid: Bubok Publishing.
- Maureira F, Flores F. (2018). Electroencefalografía (EEG) y diversas manifestaciones del movimiento: una revisión del 2000 al 2017. EmásF, Revista Digital de Educación Física, 9(51): pp. 48-63.
- Michel C, Murray M. (2012) Towards the utilization of EEG as a brain imaging tool. NeuroImage, ; 61(2): pp. 371-385. https://doi.org/10.1016/j.neuroimage.2011.12.039
- Montero F, Moran F. (1992). Biofísica: procesos de auto-organización en biología. Madrid: EUDEMA.
- Pikovsky A, Rosenblum M, Kurths J. (2001). Synchronization: a universal concept in nonlinear sciences. 1° ed. Cambridge: Cambridge University Press.
- Raimundo M, Okamoto J. (2018). Application of Hurst Exponent (H) and the R/S analysis in the classification of FOREX Securities. International Journal of Modeling and Optimization, 8(2): pp. 116-124. https://doi.org/10.7763/ijmo.2018.v8.635
- World Medical Asociation. (2013). World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA, 310(20): pp. 2191-2194.