Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Cálculo del coeficiente de difusión en líquidos por interferometría holográfica de doble exposición: estudio teórico

Calculation of the diffusion coefficient in liquids by double exposure holographic interferometry: a theoretical study.



Abrir | Descargar


Sección
Artículos

Cómo citar
Cálculo del coeficiente de difusión en líquidos por interferometría holográfica de doble exposición: estudio teórico. (2023). Revista EIA, 20(40), 4006 pp. 1-12. https://doi.org/10.24050/reia.v20i40.1668

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Declaración del copyright

Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.

La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.

Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional

Yailinn Yadiana Calvo De Armas
Néstor Alonso Arias Hernández

Martha Lucia Molina Prado,

Departamento de Física y Geologia

Profesor Titular 


En este trabajo se realiza un estudio teórico de la medición del coeficiente de difusión (CD) en sustancias líquidas con interferometría holográfica de doble exposición (IHDE). La difusión ha sido definida, a lo largo de la historia, como el fenómeno en que la materia se traslada en un sistema, desde regiones con concentraciones altas hasta aquellas regiones en las que la concentración es menor, consecuencia de los movimientos aleatorios de sus moléculas. La difusión procede gradualmente en la mezcla de las sustancias finalizando justo cuando las concentraciones se igualan; en el caso de sustancias en fase líquida, la difusión de un soluto en un solvente. Para el estudio de este proceso se han utilizado múltiples técnicas dentro de las que resaltan las ópticas, específicamente la interferometría holográfica, la cual asocia la precisión de las mediciones interferométricas con las ventajas de la holografía; al implementar IHDE, se logran comparar los frentes de onda, que en principio se separaron en el tiempo, permitiendo entonces que cualquier tipo de variación en el objeto analizado, por mínima que sea, pueda determinarse al conocer la longitud de onda característica de la luz empleada. En este artículo, se presenta el desarrollo teórico para la obtención de la expresión matemática desde la que se puede calcular el CD en líquidos, utilizando IHDE, resaltando que esta se halla a través de la comparación entre franjas interferenciales del mismo orden registradas en distintos tiempos, teniendo en cuenta las distancias, medidas desde la interface entre los dos líquidos, a las que estas aparecen. Finalmente se realiza un análisis de la expresión hallada y como esta se aplica a partir de datos obtenidos experimentalmente.


Visitas del artículo 401 | Visitas PDF 208


Descargas

Los datos de descarga todavía no están disponibles.
  1. Ambrosini, D.; Paloletti, D.; Rashidnia, N. (2008). Overview of Diffusion Measurements by Optical Techniques. Optics and Lasers in Engineering, 46(12), pp. 852-864. https://doi.org/10.1016/j.optlaseng.2008.06.008
  2. Anderson, J. S.; Saddington, K. (1949). The Use Radioactive Isotopes in the Study of the Diffusion of Ions in Solution. Journal of the American Chemical Society, S381-S386. http://dx.doi.org/10.1039/JR949000S381
  3. Becsey, J. G.; Maddux, G. E.; Jackson, N. R.; Bierlein, J. A. (1970). Holography and Holographic Interferometry for Thermal Diffusion Studies in Solutions. The Journal Physical Chemistry, 74(6), pp. 1401-1403. https://doi.org/10.1021/j100701a047
  4. Bird, R.B.; Stewart, W. E.; Lightfoot, E. N. (1987). Fenómenos de transporte. Un estudio sistemático de los fundamentos del transporte de materia, energía y cantidad de movimiento, México: Ediciones Repla, S.A.
  5. Bochner, N.; Pipman, J. (1976). A simple method of determining diffusion constants by holographic interferometry. Journal of Physics D: Applied Physics, 9(13), pp. 1825-1831. https://dx.doi.org/10.1088/0022-3727/9/13/003
  6. Cadavid, A.; Garzón, J. (2011). Optical Method For Liquid Diffusional Coefficients Calculation. Revista Colombiana de Física, 43(2), pp. 507-512.
  7. Chhaniwal, V. K.; Anand, A.; Chakrabarty, B. S. (2008). Diffusion studies in transparent liquid mediums utilizing polarization imaging, Opt. Lasers Eng. 46(12), pp. 888–892. https://doi.org/10.1016/j.optlaseng.2008.02.008
  8. Chhaniwal, V. K.; Anand, A.; Narayanamurthy, C. S. (2005). Diffusion coefficient measurement of transparent liquid solutions using digital holographic interferometry, Optical Measurement Systems for Industrial Inspection IV, Baroda, India: Proc. SPIE 5856, pp. 1109-1113. https://doi.org/10.1117/12.612416
  9. Chhaniwal, V.; Narayanamurthy, C. S.; Anand, A. (2014). Imaging of mass transfer process using artificial fringe deflection, Opt. Eng. 53(7), 074106. https://doi.org/10.1117/1.OE.53.7.074106
  10. Crank, J. (1975). The Mathematics of Diffusion, 2ª Edición, Oxford: Oxford Univesity Press.
  11. Cussler, E.L. (2009). Diffusion Mass Transfer in Fluid Systems, 3ª Edición, Cambridge: Cambridge Univesity Press.
  12. Fenichel, H.; Frankena, H.; Groen, F. (1984). Experiments on diffusion in liquids using holographic interferometry, American Journal of Physics, 52(8), pp. 735-738. https://doi.org/10.1119/1.13577
  13. Fernandez, J.L. (1983). La interferometría holográfica como técnica experimental para la determinación de coeficientes de difusión en fase líquida, tesis doctoral, Alicante, Universidad de Alicante, Departamento de Química Técnica.
  14. Gabelmann-Gray, L.; Fenichel, H. (1979). Holographic Interferomentric Study of Liquid Diffusion, Applied Optics, 18(3), pp. 343-345. https://doi.org/10.1364/AO.18.000343
  15. Ghez, R. (2001). Diffusion Phenomena: Cases and Studies, New York: Kluwer Academic.
  16. Kreis, T. (2005). Handbook of Holographic Interferometry. Optical and Digital Methods, Weinheim: Wiley-VCH. https://doi.org/10.1002/3527604154
  17. Mialdun, A.; Shevtsova, V. (2011). Measurement of the Soret and diffusion coefficients for benchmark binary mixtures by means of digital interferometry, J. Chem. Phys. 134(4), 044524. https://doi.org/10.1063/1.3546036
  18. Reid, R. C.; Prausnitz, J. M.; Poling, B. E. (1987). The Properties Of Gases & Liquids, 4ª Edición, New York: McGraw-Hill, Inc.
  19. Riquelme, R.; Lira, I.; Perez, C.; Rayas, J.; Rodríguez, R. (2007). Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty análisis, Journal of Physics D: Applied Physics, 40, pp. 2769–2776. http://dx.doi.org/10.1088/0022-3727/40/9/015
  20. Robinson, R. A.; Stokes, R. H. (2002). Electrolyte Solutions, 2ª Edición, New York: Dover Publications.
  21. Ruiz, F.; Celdran A.; Santos, C. y Fernández, J. (1985). Liquid Diffusion Measurement by Holographic Interferometry, The Canadian Journal of Chemical Engineering, 63(5), pp. 765-771. https://doi.org/10.1002/cjce.5450630510
  22. Ruiz, F.; Celdran, A.; Santos, C.; Fernández, J. (1985). Holographic Interferometric Study of Free Diffusion: A New Mathematical Treatment, Applied Optics, 24(10), pp. 1481-1484. https://doi.org/10.1364/AO.24.001481
  23. Shustin, O. A.; Velichkina, T. S.; Chernevich, T. G.; Yakovlev, I. A. (1975). Diffusion Study by a Holographic Method, Journal of Experimental and Theoretical Physics, 21(1), pp. 24-25.
  24. Stokes, R. H. (1950). An Improved Diaphragm-cell for Diffusion Studies, and Some Tests of the Method”, Journal of the American Chemical Society, 72(2), pp. 763-767. https://doi.org/10.1021/ja01158a032
  25. Szydlowska, J.; Janowska, B. (1982). Holographic Measurement of Diffusion Coefficients, Journal of Physics D: Applied Physics, 15(8), pp. 1385-1393. https://dx.doi.org/10.1088/0022-3727/15/8/009